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In this Issue 
Whi le  cos t  conta inment  i s  cer ta in ly  the  most  pub l ic ly  v is ib le  concern  in  med i  
ca l  care  today,  hosp i ta ls  are  under  jus t  as  much pressure to  improve the qua l  
i t y  o f  t o  c a r e .  S i n c e  t h e y  c a n  i n v e s t  i n  n e w  e q u i p m e n t  o n l y  e v e r y  s e v e n  t o  
f i f teen years,  hospi ta ls  want  that  equipment  to  be easy to  upgrade and adapt  
to  new technolog ies.  In  des ign ing HP's  four th-generat ion pat ient  moni tor ing 
system, the engineers at  HP's  Medica l  Products Group had to deal  wi th  these 
and other  issues in f luenc ing the i r  hospi ta l  customers '  investment  dec is ions.  

~ r  T h e  M o n i t o r i n g  o f  t h e  n e w  s y s t e m ,  w h i c h  t h e y  c a l l  t h e  C o m p o n e n t  M o n i t o r i n g  
System, emphasizes modular i ty ,  f lex ib i l i ty ,  and ease of  use whi le addressing 
the increas ing need to  measure  new pat ien t  parameters  and to  process th is  

in format ion us ing power fu l  a lgor i thms and data management  too ls .  The ar t ic le  on page 6 in t roduces the 
system software i ts overal l  architecture, while detai ls of the hardware and software architectures can be 
found acquisition, parameter articles on pages 10, 13, and 19. The necessary functions of data acquisition, parameter 
s i gna l  so f twa re  d i sp lay ,  and  sys tem connec t i ons  a re  imp lemen ted  as  ha rdware  and  so f twa re  bu i l d i ng  
b locks .  App l ica t ion  so f tware  modu les ,  such as  the  b lood pressure  measurement  so f tware ,  can  be  arb i  
t r a r i l y  t ha t  t o  any  CPU in  a  l oose l y  coup led  mu l t i p rocesso r  sys tem.  The  app l i ca t i ons  t h i nk  t ha t  t hey  
are running on a nonexis tent  v i r tua l  processor .  The arch i tecture makes i t  easy to  conf igure the system 
for  both  cur rent  and fu ture  needs in  the operat ing room,  in tens ive and card iac  care  un i ts ,  and o ther  hos 
p i ta l  areas,  and cont r ibutes to  a  great ly  s impl i f ied ,  low-cost  product ion and tes t  process.  Pat ient  param 
eters such as b lood pressure,  the e lect rocard iogram (ECG),  b lood gases,  temperature,  and others are 
measured processor state-of-the-art modules that can be located close to the patient while the signal processor 
and d isplays can be in another  room, i f  necessary.  The ECG, b lood pressure,  and recorder  modules are 
descr ibed in the ar t ic les on pages 21,  25,  and 26.  The system not  only provides the c l in ic ian wi th the raw 
data measured by these modules,  but  a lso processes i t ,  as expla ined in the ar t ic le on page 40,  to obtain 
many mean ingfu l  ind ica tors  o f  phys io log ica l  func t ions ,  such as  vent r icu la r  e jec t ion  and sys temic  vascu 
lar  res is tance.  Ease of  use is  del ivered by a thoroughly tested user in ter face design (see page 29),  which 
can be loca l ized eas i ly  fo r  most  languages (page 37) .  Mechanica l  des ign,  so f tware tes t ing,  and produc 
t ion subjects 44, test of the Component Monitoring System are the subjects of the art icles on pages 44, 49, 
and 52. 

The personal  computer ,  or  just  PC,  based on the Industry  Standard Archi tecture ( ISA) p ioneered by the 
IBM PC, microprocessors gained steadily in processing power as each new generation of Intel microprocessors was 
int roduced.  The HP Vectra 486 PC uses not  only the latest-generat ion microprocessor,  the Inte l486,  but  
a lso the new Extended Industry  Standard Archi tecture (EISA).  The Inte l486 in tegrates the CPU, a cache 
memory,  and a math coprocessor onto one chip running at  25 or  33 megahertz.  The EISA takes the 16-bi t  
ISA bus design 32 bits while maintaining compatibil i ty with all ISA I/O cards. The design of the HP Vectra 486 
shows constraints designers can sti l l  contribute creatively within the constraints of industry standards. Among 
the des ign cont r ibut ions are  an arch i tec ture  that  incorporates  a l l  o f  the new techn ica l  features o f  the 
EISA connector adapts easily to faster versions of the Intel486, a bus connector that accommodates both EISA 
and ISA subsystem, a burst-mode memory control ler,  a high-performance hard disk subsystem, and enhance 
ments new overview Vectra's basic I/O system (BIOS) to take advantage of all of the new features. An overview 
of  the pages 486 design appears on page 69,  and the ar t ic les on pages 73,  78,  and 83 d iscuss the con 
nector ,  memory cont ro l ler ,  and BIOS des igns.  Per formance analys is  o f  many of  the des ign concepts  was 
done us ing a  spec ia l ized hardware and sof tware too lset ,  a l lowing the des igners  to  make cr i t i ca l  des ign 
t rade-of fs  before commit t ing to  hardware (see page 92) .  

October 1991 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



How much does a  so f tware  defec t  cos t  in  te rms o f  unnecessary  expense and los t  p ro f i t?  Why is  i t  impor  
tant  the page As Jack Ward of  HP's Wal tham Div is ion expla ins in  the ar t ic le  on page 55,  i f  you ' re t ry ing to 
justify reducing cost of a new software development tool, i t  helps to know what the tool wil l  save by reducing 
s o f t w a r e  a  H e  p r o p o s e s  a n  a l g o r i t h m  f o r  c o m p u t i n g  t h e  c o s t  o f  s o f t w a r e  d e f e c t s ,  a p p l i e s  i t  t o  a  
f ive-year  database o f  so f tware product  re leases,  and shows that  defec t  prevent ion and ear ly  removal  
can save a lot  of  money. 

Code development  are now standard procedure in  many sof tware development  organizat ions.  Are they 
ef fect ive? The ar t ic le on page 58 descr ibes the resul ts of  one HP div is ion's ef for t  to col lect  data to f ind 
out .  There are both posi t ive and negat ive f ind ings,  but  the conclus ion is  that  formal  inspect ions are 
benef ic ia l ,  whi le the value of  in formal  inspect ions is  s t i l l  open to quest ion.  

R.P. Dolan 
Editor 

What's Ahead 
The December  issue wi l l  feature HP Sockets ,  a  sof tware too l  for  in tegrat ing appl icat ions in  a  network 
envi ronment .  An ar t ic le  f rom HP Laborator ies in  Br is to l ,  England wi l l  in t roduce HP's formal  speci f icat ion 
language,  HP-SL,  and four  ar t ic les wi l l  present  examples of  the use of  HP-SL in sof tware development .  
Another  a r t i c le  w i l l  descr ibe  the  HP Network  Mon i to r ing  Sys tem fo r  te lecommunica t ions  ne tworks  us ing  
the 2-Mbi t /s  pr imary rate inter face and the CCITTR2 or #7 s ignal ing system. The 1991 index wi l l  a lso be 
included. 

T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  p u b l i s h e d  b i m o n t h l y  b y  t h e  H e w l e t t - P a c k a r d  C o m p a n y  t o  r e c o g n i z e  t e c h n i c a l  c o n t r i b u t i o n s  m a d e  b y  H e w l e t t - P a c k a r d  
( H P )  p e r s o n n e l .  W h i l e  t h e  i n f o r m a t i o n  f o u n d  i n  t h i s  p u b l i c a t i o n  i s  b e l i e v e d  t o  b e  a c c u r a t e ,  t h e  H e w l e t t - P a c k a r d  C o m p a n y  d i s c l a i m s  a l l  w a r r a n t i e s  o f  
m e r c h a n t a b i l i t y  a n d  f i t n e s s  f o r  a  p a r t i c u l a r  p u r p o s e  a n d  a l l  o b l i g a t i o n s  a n d  l i a b i l i t i e s  f o r  d a m a g e s ,  i n c l u d i n g  b u t  n o t  l i m i t e d  t o  i n d i r e c t ,  s p e c i a l ,  o r  c o n s e  
quen t i a l  pub l i ca t i on .  a t t o rney ' s  and  expe r t ' s  f ees ,  and  cou r t  cos t s ,  a r i s i ng  ou t  o f  o r  i n  connec t i on  w i th  t h i s  pub l i ca t i on .  

S u b s c r i p t i o n s :  T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  d i s t r i b u t e d  f r e e  o f  c h a r g e  t o  H P  r e s e a r c h ,  d e s i g n  a n d  m a n u f a c t u r i n g  e n g i n e e r i n g  p e r s o n n e l ,  a s  w e l l  a s  t o  
q u a l i f i e d  a d d r e s s  i n d i v i d u a l s ,  l i b r a r i e s ,  a n d  e d u c a t i o n a l  i n s t i t u t i o n s .  P l e a s e  a d d r e s s  s u b s c r i p t i o n  o r  c h a n g e  o f  a d d r e s s  r e q u e s t s  o n  p r i n t e d  l e t t e r h e a d  ( o r  
inc lude submi t t ing address,  card)  to  the HP address on the back coyer  that  is  c losest  to  you.  When submi t t ing a  change of  address,  p lease inc lude your  z ip  or  
pos ta l  code  and  a  copy  o f  you r  o l d  l abe l .  

S u b m i s s i o n s :  H P - r e  a r t i c l e s  i n  t h e  H e w l e t t - P a c k a r d  J o u r n a l  a r e  p r i m a r i l y  a u t h o r e d  b y  H P  e m p l o y e e s ,  a r t i c l e s  f r o m  n o n - H P  a u t h o r s  d e a l i n g  w i t h  H P - r e  
l a t e d  r e s e a r c h  o r  s o l u t i o n s  t o  t e c h n i c a l  p r o b l e m s  m a d e  p o s s i b l e  b y  u s i n g  H P  e q u i p m e n t  a r e  a l s o  c o n s i d e r e d  f o r  p u b l i c a t i o n .  P l e a s e  c o n t a c t  t h e  E d i t o r  
b e f o r e  s u b m i t t i n g  s u c h  a r t i c l e s .  A l s o ,  t h e  H e w l e t t - P a c k a r d  J o u r n a l  e n c o u r a g e s  t e c h n i c a l  d i s c u s s i o n s  o f  t h e  t o p i c s  p r e s e n t e d  i n  r e c e n t  a r t i c l e s  a n d  m a y  
pub l i sh  l e t t e r s  expec ted  t o  be  o f  i n t e res t  t o  r eade rs .  Le t t e r s  shou ld  be  b r i e f ,  and  a re  sub jec t  t o  ed i t i ng  by  HP .  

Copyr ight  publ icat ion granted Hewlet t -Packard Company. Al l  r ights reserved.  Permission to copy wi thout  fee al l  or  part  of  th is publ icat ion is  hereby granted provided 
that  1 )  advantage;  Company are not  made,  used,  d isplayed,  or  d is t r ibuted for  commercia l  advantage;  2)  the Hewlet t -Packard Company copyr ight  not ice and the t i t le  
o f  t h e  t h e  a n d  d a t e  a p p e a r  o n  t h e  c o p i e s ;  a n d  3 )  a  n o t i c e  s t a t i n g  t h a t  t h e  c o p y i n g  i s  b y  p e r m i s s i o n  o f  t h e  H e w l e t t - P a c k a r d  C o m p a n y .  

P lease  Jou rna l ,  i nqu i r i es ,  subm iss i ons ,  and  reques t s  t o :  Ed i t o r ,  Hew le t t -Packa rd  Jou rna l ,  3200  H i l l v i ew  Avenue ,  Pa lo  A l t o ,  CA  94304  U .S .A .  
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Introduction to the HP Component 
Monitoring System 
Th is  o f  pa t ien t  mon i to r ing  sys tem o f fe rs  a  se t  o f  hardware  
and software building blocks from which functional modules are 
assembled to tailor the system to the application and the patient. 

by Christoph Westerteicher 

Over the past twenty years HP has been a supplier of 
patient monitoring equipment to the healthcare industry. 
Patient monitors are observational and diagnostic tools 
that monitor physiological parameters of critically ill pa 
tients. Typical parameters include the electrocardiogram 
(ECG), blood pressure measured both invasively and non- 
invasively, pulse oximeter (SaC>2), and respiratory gases, 
among others. The catalog of parameters is still growing 
based on the need for better patient care and the techni 
cal feasibility of new measurement techniques. 

Patient monitors are used in a variety of departments 
within hospitals. These include operating rooms, intensive 
care units, cardiac care units, in-hospital and out-of-hospi- 
tal transportation, and special function areas such as 
lithotripsy and x-ray. A patient monitoring system must be 
versatile and applicable to most of these areas. This 
means that it must support a wide range of configurations 
and allow quick adaptation to the patient-specific level of 
care. For a normal appendectomy, monitoring the ECG, 
noninvasive blood pressure, SaO2, and one temperature 
will suffice. At the other extreme, during a cardiovascular 
operation as many as eight different physiological parame 
ters will be measured. 

The HP Component Monitoring System is designed to 
meet these requirements. This article outlines the high-lev 
el project goals and the approaches taken to meet them. 
It also describes the overall hardware and software archi 
tecture of the HP Component Monitoring System. Subse 
quent articles in this issue highlight the technical contri 
butions of the Component Monitoring System project in 
more detail. 

Design Goals 
The HP Component Monitoring System is the fourth gen 
eration of patient monitors to be designed and built by 
the HP Medical Products Group. Based on our experi 
ence, current customer needs, and expected future trends 
in the medical field, two objectives were viewed as areas 
in which HP could make a major contribution. One is the 
area of modularity and flexibility and the other is ease of 
use. 

Modularity and Flexibility. The monitor is composed of the 
following functional modules: 

* Data acquisition 
â€¢ Parameter signal processing 

â€¢ Monitor control and data input 
â€¢ Display 
â€¢ System connects. 

Each of these functional modules is implemented in a set 
of hardware and software building blocks, which as a 
whole form the Component Monitoring System depicted 
in Fig. 1. Separating the monitor into its generic elements 
provides many advantages. First, the monitor can easily 
be configured to best meet the application needs of the 
individual customer. Parameters can quickly be combined 
according to the required level of care and changed when 
necessary. Second, adding functionality to a monitor is as 
simple as inserting the appropriate hardware into an ex 
isting unit and updating the software if necessary. 

A third advantage is that the Component Monitoring Sys 
tem can be kept abreast of new technological trends by 

Fig. 1. In the HP Component Monitoring System, a fourth-genera 
tion in monitor, each functional module is implemented in a 
set of hardware and software building blocks. 
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Fig. 2. The Component Monitoring System architecture has three 
segments: the module rack and parameter modules, the computer 
module, and the displays. The module rack can be either an integral 
part of the computer module or totally detached. A remote keypad 
is optional. 

enhancing or redesigning the appropriate functional ele 
ment. Implementation will only affect one building block, 
and will be fully backward compatible with existing sys 
tems. 

Finally, production has been dramatically simplified. Cus 
tomization of each monitor is the last integration step in 
production. Thus, all components can be assembled and 
tested without knowing the specific configuration in 
which they will be used. 

Flexibility is enhanced by designing the monitor compo 
nents so that their physical location can be optimized to 
address ergonomic considerations and by allowing the 
user to program the monitor's default settings and stan 
dard configuration. This means that the monitor can be 
adapted to a wide range of current and future clinical 
applications. 

Ease of Use. Ease of use is of particular importance for 
patient monitors in operating rooms and critical care 
units, where clinicians use patient monitors to make in 
formed decisions about potentially life-threatening situa 
tions. In the past, clinicians have had to strike a compro 
mise between the desired functionality of a patient 
monitor and its ease of use. Our goal was to make this 
very sophisticated piece of equipment truly intuitive for 
doctors and nurses to use. Other areas that we focused 
on, and that played an important role during the develop 
ment phase were: 
Implementation of methods to meet HP quality goals. 
Minimization of production costs and support for a linear 
cost profile. This means that functionality can be seg 
mented down to its generic building blocks. Should a par 
ticular feature be needed, the customer pays for it and 
nothing more. 

â€¢ Standardization, ranging from uniform design tools and 
software development environments all the way to mini 
mizing the number of different electrical components 
used in the Component Monitoring System as well as the 
number of mechanical parts needed to assemble the unit. 

System Architecture 
From an architectural standpoint the Component Monitor 
ing System can be divided into three segments (see Fig. 
2): 

1 Module rack with parameter modules 
1 Computer module 
â€¢ Displays. 

The module rack and parameter modules represent the 
interface to the patient. Each parameter module is dedi 
cated to the measurement of one or more physiological 
signals, and is housed in a separate enclosure. Within the 
parameter modules, the transducer signals are electrically 
isolated from ground potential, amplified, sampled, and 
converted from an analog to a digital format. The digital 
parameter values together with the status of each module 
are polled at fixed intervals and sent to the computer 
module for further interpretation. 

Up to eight single-width modules fit into one module 
rack. The module rack can be either an integral part of 
the computer module or totally detached, in which case it 
would be called a satellite module rack. The satellite 
module rack is connected to the computer module by an 
umbilical-cord-like cable, which carries both the digital 
signals and a 60V dc power line for the parameter mod 
ules. One computer module can support as many as four 
satellite module racks. This concept allows the user to 
position the parameter modules as close as possible to 
the patient, where the signal is measured. The transducer 
cables can thus be kept short, minimizing the amount of 
wiring as well as the tendency for it to become tangled 
or draped over the patient. 

Computer Module 
The computer module is the main processing unit. It con 
sists of a cardcage that can house up to 23 function 
cards and one dc-to-dc converter (Fig. 3). Function cards 
currently available include CPUs, memory cards, interface 
cards, display controllers, and a utility card. For the first 
release, a total of 11 function cards were designed. The 
interconnection within the cardcage takes place via the 
central plane, a motherboard located in the middle of the 
chassis with press-fit connectors mounted on both sides 

Fig. 3. The computer module houses up to 2-'i function cards. 
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Fig. Sys Functional block diagram of a Component Monitoring Sys 
tem patient monitor. The shaded boxes are software functions on 
the CPU card processors. The solid boxes are specific hardware and 
firmware functions. 

of a printed circuit board. Data exchange between the 
function cards takes place on the message passing bus. 
This bus is routed to all 23 slots on the central plane, 
allowing a high degree of freedom as to where a function 
card can be inserted. The message passing bus is the 
backbone of the Component Monitoring System. Many of 
the goals listed above only became possible with the help 
of this communication concept. 

The basic function of the message passing bus is that of 
a broadcast system. Each message sent on the bus con 
sists of a header, which describes the content, and the 
actual data. A source (e.g., a CPU card) will obtain con 
trol of the message passing bus and transmit its informa 
tion. The data is not transmitted in a point-to-point fash 
ion from one source to one receiver. Instead, message 
passing bus data is transmitted without any specific desti 
nation, and it is up to the function cards to watch for the 
information needed by their applications. As soon as a 
card detects a match between a header it is looking for 
and the header of the message on the bus, it automatical 
ly pulls this data into an internal stack. 

The activities of bus arbitration, transmission, header 
matching, and data reception are controlled by the mes 
sage passing bus chip. One of these interface chips is 
located on each function card that actively takes part in 
the communication process. The chip was designed spe 
cifically for the Component Monitoring System. It also 
was the first HP production ASIC (application-specific 1C) 
to be designed using a silicon compiler tool. 

A more detailed description of the message passing bus 
concept and the design of the interface chip can be found 
in the article on page 10, which covers the Component 
Monitoring System hardware architecture. 

Displays 
The customer can choose either a monochrome or color 
high-resolution display. Multiple independent displays can 
be used to present different sets of information to specif 
ic user groups. For example, the surgeon needs a differ 
ent presentation of patient information than the anesthe 
siologist during surgery. 

Physically separating the display from the computer mod 
ule gives the user a choice of screen sizes and the possi 
bility of mounting the computer module at a remote loca 
tion when space next to the patient is at a premium. 

The user interacts with the monitor through a combina 
tion of hardkeys and softkeys on the display keypad or 
through a remote keypad which functionally duplicates 
the keys on the display bezel. 

Software Modularity 
The concept of a modular system also applies to the soft 
ware architecture (see Fig. 4). Application-specific mod 
ules represent the basic building blocks out of which the 
total solution can be assembled. The ECG application, for 
example, including the signal interpretation, alarm han 
dling, and control interaction, is all encapsulated in one 
module. To the surrounding environment these application 
software modules are totally self-contained packages, and 
only exchange information with one another via the mes 
sage passing bus. By virtue of this concept, it is possible 
to link each module as an independent entity with any of 
the other modules and assign it to one of the Component 
Monitoring System CPU cards. 

A more detailed description of the software architecture 
can be found in the article on page 13. 

All of the Component Monitoring System software is 
stored on EPROM function cards. These cards are physi 
cally located next to a CPU, and the applications running 
on that CPU execute directly from the adjacent memory 
card. All other CPU cards in the monitor get their appli 
cation software downloaded into the on-board RAM dur 
ing boot time. The advantage of this solution is that in 
stalling software is as easy as inserting one EPROM card. 

Summary 
The Component Monitoring System has proved that the 
concept of component modularity can be extended far 
beyond the mere ability to mix and match parameter 
modules. Modularity in this system means that the cus 
tomer can tailor the patient monitor to best fit the appli 
cation all the way from the parameters that need to be 
registered to the displays and interfaces the system 
should incorporate. The Component Monitoring System 
can also grow with the user's needs over time, and thus 
secure the hospital's assets for many years. 

The success of the modularity concept is reflected in the 
fact that some of the hardware and software elements 
have found their way into other medical devices manufac 
tured by HP. Overall, the Component Monitoring System 
architecture has proven it can function as a monitoring 
platform for years to come. 

(continued on page 101 
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Medical Expectations of Today's Patient Monitors 

HP has been a supplier of patient monitors since the mid-1 960s. The HP 7830. HP , 
782xx, blood 7835x, and HP 7853x monitors have measured vital signs like ECG. blood 
pressure, body temperature, carbon dioxide, inspired oxygen, and others. 

Over have years, customer demands and measurement technology have both devel 
oped Simple ECG monitors have gradually become complex monitoring solutions, 
acquiring, processing, displaying, and storing many parameters. These modern 
monitors need to communicate over dedicated LANs, both with one another and 
with introduced stations. For this purpose, several years ago. HP introduced a serial 
distribution network (SON), which makes it possible to transmit a multitude of 
parameters, high-resolution waveforms, and other information to as many as 32 
participants in a synchronous way. These features are not easily achievable with 
modern asynchronous LANs. 

Medical  Expectat ions 
Most many current patient monitors do not satisfactorily fulfill many of the current 
and future expectations for these systems. The increasing need to measure new 
parameters and to postprocess this information using powerful signal processing 
algorithms and data management tools require a different approach. At the same 
time, our customers are under tremendous cost containment pressure, allowing 
them to Having in new equipment only in cycles of seven to fifteen years. Having 
these for other customer needs in mind, we launched a development program for 
a new patient monitoring system. The goals of our project were to: 
Develop a solution that can be easily adapted to our worldwide customers' medi 
cal as well as financial needs. 
Develop a user interface that allows the user to control the system easily through 
different means including softkeys, touch, and remote keyboards (see article, page 
29). 
Develop a solution for all major languages, including Asian languages. 
Develop a solution that is backwards compatible with the existing LAN (SON) and 
future LAN implementations. 
Develop a solution corresponding to our customers' space restrictions. This often 
means acquiring measurement data close to the patient to avoid the so-called 
"spaghetti syndrome" â€” too many cables around the patient â€” and processing 
and displaying the measurement data farther away from the patient. 

Develop a solution that allows additional CPUs to be added to the system accord 
ing to the signal processing needs, and that provides independent displays that 
can be addressed directly. 

Conclusion 

The HP Component Monitoring System is our solution to these needs. Fig. 1 shows 
the bedside monitoring concept of this system. Expansion is possible both horizon 
tally functional vertically in this matrix. The horizontal axis shows the various functional 
needs, in the vertical axis shows various ways in which these needs are met in 
specific applications. The last row of the matrix shows examples of possible future 
capabilities that can be added easily to the Component Monitoring System if and 
when they become available. 

The HP Component Monitoring System is an ultraf lexible patient monitoring sys 
tem that can be adapted to almost all monitoring needs that arise in hospitals 
worldwide. Its built-in modularity and an HP proprietary message passing bus 
make it displays. of technology changes in microprocessors, LANs, or displays. 
This protecting our to result in a very long product lifetime, thereby protecting our 
customers' investments. By offering different configurations of the Component 
Monitoring System, we provide a wide price/performance range, and through a 
flexible upgrade strategy, we ensure high adaptability to our customers' future 
needs. 

The Component Monitoring System is a truly international development that in 
volved at in the U.S.A. and in Europe. Today, it is being manufactured at 
two HP sites, one in Europe and one in the U.S.A. 

Such encountering significant technology step can never be taken without encountering chal 
lenges. Thanks to the engagement and dedication of all of the team members, 
these challenges were met successfully. 

Frank Rochlitzer ' 
General Manager 
Surgical and Neonatal Care Business Unit 

Application 
Solutions 

Voice Workstation 

Fig. 1. System.. bedside monitoring concept of the HP Component Monitoring System.. 
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Component Monitoring System 
Hardware Architecture 
Up to over a cards residing in a computer module communicate over a 
message passing bus. The computer module, the display, and the 
parameter modules that measure vital signs can be in separate locations 
as needed by the application. 

by Chris toph Westerte icher  and Werner  E.  Heim 

The prime objective in the development of the HP Com 
ponent Monitoring System was to build a patient monitor 
that would adapt optimally to the majority of clinical 
applications, now and in the foreseeable future. To the 
R&D team, this meant modularity, but not just in the 
sense of being able to mix and match parameters. The 
goal of this project was to carry the idea of configurabil 
ity a quantum leap into the future. 

Major Parts 
The Component Monitoring System can be segmented into 
three parts (Fig. 1): 

â€¢ The rack and parameter modules 
â€¢ The computer module 
â€¢ The display. 

This segmentation is not just a theoretical way of looking 
at the Component Monitoring System. The system can 
actually be separated into these components. It is there 
fore possible to place the parameter modules close to the 
patient and position the display within sight of the anes 
thesiologist, while the computer module can be totally 
removed from the vicinity of the patient. 

Computer Module 
The computer module incorporates all the processing 
power, the interfaces to other devices and networks, the 
display controllers, and drivers for human interface equip 
ment. 

These functional elements have been broken into their 
generic components, and then designed and implemented 
as individual function cards. The processing power, for 

example, is provided by an application dependent number 
of CPU cards, working together as a loosely coupled mul 
tiprocessor system. Based upon a 16/32-bit microproces 
sor, each CPU card is an independent subsystem, includ- 

System 
Interface 

(RS-232, HDLC) 

Parameter 
Modules 

Fig. 1. Block diagram of the Component Monitoring System hard 
ware architecture. 
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Fig. 2. CPU card block diagram. 

ing a large amount of static memory, boot EPROM, and 
an interface chip for the computer module's internal bus, 
the message passing bus (Fig. 2). The ability to work as a 
self-contained, independent entity was the smallest com 
mon denominator we wanted to apply to our computer 
module building blocks. Because of this concept, process 
ing power, interface cards, or display controllers can be 
added depending upon the customer's application. New 
function cards can be added by plugging them into the 
computer module without interfering with the existing 
configuration. 

Local resources of a function card, like static memory or 
EPROM, can be extended by adding a battery-buffered 
static RAM card and an EPROM card. They connect to a 
local extension bus, which is routed on the same connec 
tor as the message passing bus, thus allowing an identical 
design for all slots on the backplane. 

At first release of the Component Monitoring System, 
there are 11 function cards. The spectrum includes the 
above-mentioned processor and memory cards, interface 
cards to RS-232 devices and HP's medical signal distribu 
tion network (SON), high-resolution monochrome and 
color display controllers, and other cards. 

Each function had to fit onto the standard function card. 
To make this possible, several application-specific inte 
grated circuits (ASICs) provide high performance in a 
minimum of card space. Surface mount technology allows 
components in very small packages to be mounted close 
together directly on the surface of a function card. The 
benefits of these new technologies are highly automated 
production processes, reduced part count, and increased 
reliability. 

Message Passing Bus 
The message passing bus represents the backbone of the 
Component Monitoring System. It is by virtue of this so 
lution that it was feasible to implement modularity in 
such an extensive fashion. 

The message passing bus is based on a message broad 
casting system, in which one bus participant transmits 
information without having to specify the address of the 

receiving device. Instead, every message is classified by a 
header, indicating the content of the message. A bus par 
ticipant interested in a specific class of messages writes 
the header of the information and a priority into the sig 
nature RAM of its message passing bus interface. When 
the header of the message on the bus and the header in 
the signature RAM match, the receiving card's message 
passing bus interface automatically loads that message 
into its FIFO buffer. Depending on the priority assigned, 
the incoming information is pushed into either the 
high-priority or the low-priority FIFO, thereby preprocess 
ing data for the CPU. Comparing headers and moving 
information into and out of the FIFOs is controlled by the 
message passing bus interface chip with no interaction 
from the data processing device. Fig. 3 is a block diagram 
of this chip. 

The major advantages of this concept are threefold. First, 
messages only need to be sent once, regardless of the 
number of bus participants interested in the information. 
This guarantees that bus bandwidth is not used merely to 

CPU 

Receive 1 
(Slow Data) 

Receive 2 
(Fast Data) 

Transmit 1 
(High Priority) 

Transmit 2 
(Low Priority) 

Data 
Selector/Dispatcher 

M e s s a g e  
P a s s i n g  
B u s  

Fig. 3. Message passing bus interface chip block diagram. 
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duplicate messages going to multiple receivers. Second, 
the absolute bus bandwidth is defined by the speed of the 
message passing bus interface chip. The chip controls the 
transmit and receive FIFOs and compares headers with 
out support from the data processing device. In essence, 
the message passing bus chip is a buffer between a 
high-speed bus and data processing logic working at vary 
ing speeds, which should not be interrupted by every bus 
activity if it is to function effectively. 

The third major advantage of the message passing con 
cept is that new system cards can be added to a monitor, 
and as long as they know the algorithm for allocating 
headers, they can actively participate on the message 
passing bus. The bus has a decentralized arbitration algo 
rithm, which determines how each participant accesses 
the bus. Each interface chip incorporates arbitration cir 
cuitry based on a round-robin-like system, assigning the 
bus on a rotating priority basis. If the current bus master 
is level n, priority n â€” 1 will be given to the next interface 
requesting the bus, and so on sequentially. This guaran 
tees that the bus is shared equally among all of the func 
tion cards and is dynamically distributed every time a 
message is sent. 

The message passing bus chip was designed as an ASIC, 
using a silicon compiler tool to develop and simulate the 
circuit's functionality. 

Central Plane and Power Concept 
In the center of the computer module chassis is a 23-con- 
nector motherboard with press-fit sockets mounted on 
both the front and the rear. The message passing bus is 
routed to all 23 slots on this central plane (Fig. 4). 

Since all of the function cards are mechanically identical 
in size, any card can be inserted into any slot of the cen 
tral plane, thus making possible a wide range of configu 
rations. The only exemption is the dc-to-dc converter, 
which always is located in the same slot. This one card 
provides the power for the computer module, and is 
sourced with 60V directly from the Component Monitoring 
System display (Fig. 5). 

This somewhat uncommon power architecture was neces 
sary to comply with the stringent leakage current limits 
imposed on medical equipment. If the Component Moni 
toring System were to incorporate separate power sup 
plies in the display and the computer module, the leakage 
currents of both to ground would be added together, mak 
ing it very difficult to reduce this value to below 100 u A. 

Display 
(Monochrome or Color) 

Power Supply 

Parameter Module Interface 

Parameter 
Module 

Conversion and 
Isolation Between 

Ground and 
Floating Circuitry 

Fig. 5. Power concept. The single power supply is housed in the 
display. 

The second reason for taking the power supply out of the 
computer module was the need to reduce the amount of 
heat dissipated in this small box to a minimum, so as not 
to jeopardize reliability. We therefore decided to have 
only one power supply for the entire Component Monitor 
ing System, and to house this in the display. 

The Display 
Customers can choose either a monochrome or color 
14-inch display (Fig. 6). These are high-resolution, nonin- 
terlacing, high-contrast displays designed and built specifi 
cally for medical applications. 

To provide outstanding waveform quality, the displays and 
the display controllers have a very high horizontal resolu 
tion of 2048 pixels. At this pixel spacing the human eye 
can no longer resolve the individual dots, so the curves 
appear very smooth. 

The displays also incorporate the Component Monitoring 
System control panel, located beneath the screen. This 
control panel is the main means of interacting with the 
monitor. It consists of a membrane keyboard, LED indica- 

Fig. 4. Computer module central plane and function cards. Fig. 6. The display also incorporates the control panel. 
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tors, and the human interface board, which is an HP-HIL 
device looped through to the computer module. 

Summary 
The hardware architecture has proven to be one of the 
steps on the ladder to success of the Component Monitor 
ing System. With the advent of this new monitor, produc 
tion has been automated and streamlined to an extent 
unheard of for such a complex device as a patient moni 
tor. The parts standardization effort has resulted in a 
mere 300 different items for the entire system. Our cus 

tomers can now have a state-of-the-art monitoring system 
that they can configure to their specific needs, and at the 
same time be assured that their system has been de 
signed to stay abreast with technological or application 
changes for many years to come. 
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Component Monitoring System 
Software Architecture 
A modular design leads to a complex but easily manageable system that 
ensures economical resource utilization. 

by Martin Reiche 

HP Component Monitoring System patient modules can be 
mixed and matched to suit the application. A module is 
added simply by plugging it into any free slot in the mod 
ule rack. Wouldn't it be convenient to handle all functions 
implemented as software the same way? Just find a free 
resource on any CPU card and assign the required set of 
software building blocks to it. Use only as many CPUs as 
necessary. This article will show that this approach is not 
only viable, but also appropriate in terms of both develop 
ment economics and resource utilization. 

The basic idea of having building blocks with standard 
ized interfaces that can be arbitrarily combined has prov 
en its power in many projects. The Component Monitor 
ing System patient signal acquisition system, computer 
module, and message passing bus concept reflect this 
idea well. 

This approach should also be promising for software. 
However, a problem with software is its complexity, both 
internally and in terms of interaction with external enti 
ties. Component Monitoring System software modules 
show significantly different profiles in resource require 
ments, must share a multiprocessor real-time system in 
varying configurations without conflicts, have to act and 
communicate in a meaningful way with regard to the cur 
rent configuration, and are implemented by different peo 
ple in different places at different times. This makes stan 
dardization difficult. 

We will show how these problems were overcome, both 
from an architectural point of view and from a develop 
ment environment perspective. As we proceed, we will 
encounter a continuously recurring question in different 
contexts: How can we provide the needed creative free 
dom for each individual, and at the same time manage 
their cooperation and integration into a coherent total 
solution? 

Layered Software 
As can be seen in Fig. 1, the Component Monitoring Sys 
tem's functionality can be represented in a layered 
scheme. Similar to existing computer systems, the hierar 
chy has four levels: 

Applicat ion Software 

Operating 
System 

Firmware 

Hardware 

Operating System: 
Scheduling, Communication, Configuration 

Fig. 1. The basic task allocation scheme of the Component Monitor 
ing System uses a layered software structure. The lower-layer activi 
ties are transparent to the application software modules, which are 
designed lo nin on :< vul n.-il processor. 
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Component Monitoring System 
Software 

T o t a l  a m o u n t  o f  s o u r c e  c o d e :  3 1 5  K N C S S  

N u m b e r  o f  s o f t w a r e  m o d u l e s  d e v e l o p e d  3 0  

Number  o f  modu le  ins tances  in  an  ins t rument  43  

Number of message passing bus headers allocated 
b y  t h e  o p e r a t i n g  s y s t e m  8 8 0  

Average data f low on the message passing bus 50 kbytes/s 

1 The CPU cards represent the basis for all data process 
ing. They communicate over the message passing bus. All 
interfaces to external devices are found here. 

' Firmware located on these cards provides services to the 
higher layers of the model. The firmware implements 
complex application independent functions by convert 
ing commands and protocols into hardware related sig 
nals. Patient parameter modules play a special role: con 
trolled by firmware, their analog and digital hardware 
converts the incoming patient signals into digital infor 
mation accepted by the computer module. 
The operating system establishes the data paths between 
the application software modules on the one hand and 
the firmware on the other. It controls the execution of the 
application programs, moves messages back and forth, 
and continuously supervises the correct execution of all 
functions. 
It is up to the applications to provide the signal interpre 
tation, computation, alarm generation, and similar func 
tions and to support user interaction by drawing windows 
and menus on the screen. How functions are implem 
ented in the lower layers is hidden from the application 
software modules. 

Modules and Messages 
All function cards are designed so that they can be arbi 
trarily combined over the central plane. They can trans 
mit and receive messages and perform their functions 
regardless of the slots in which they reside. 

In a straightforward extension of this principle, the Com 
ponent Monitoring System software architecture allows 
for arbitrary distribution of software to the various pro 
cessor cards (see Fig. 2). These self-contained application 
software modules are the building blocks of the modular 
system. Each module represents a large functional area â€” 
for example, the signal processing for the blood pressure 
measurement with its affiliated aspects of alarming, con 
trol interaction, transducer calibration, and so on. 

To achieve this modularity, the current configuration is 
made transparent to the modules. They will execute on 
any CPU card, and their sharing of a CPU card with oth 
er modules will not interfere with their operation. The 
only way they can communicate is to transmit and re 
ceive messages. As with the message passing bus, the 

P r e s s . 3  A S W  

P r e s s . 2  A S W  T e m p . 1  A S W  

P r e s s .  1  A S W  T r e n d  A S W  

H I F . 1  A S W  N e t w o r k  A S W  

H 1 F . 2  A S W  

E C G  A S W  A l a r m  A S W  

A S W  =  A p p l i c a t i o n  S o f t w a r e  M o d u l e  

Fig. 2. to software modules can be assigned arbitrarily to 
the available CPU cards to achieve the most economical resource 
utilization. 

origins and destinations of these messages are hidden 
from the application. 

This principle guarantees maximum flexibility in reaching 
the required functionality with a given hardware set. It 
also reduces development risks, since at the beginning of 
a complex project, neither the sizes of the modules nor 
the resulting processing requirements can be accurately 
estimated. 

Inside a Module 
From a programmer's point of view, a module is com 
posed of a number of related C-language source files (see 
Fig. 3). There are different types of files. For example, 
PROG files contain executable code and variable defini 

tions, and TEXT files consist only of character codes. 

Following a tailored syntax, an ASCII file called a module 
table provides comprehensive information about that mod 
ule. Identification, communication behavior, execution, 
and resource requirements are specified in this table. This 
file is converted to C source code by means of an HP-de 
veloped compiler called mtc. In this way, a generic module 

Module Table 
â€¢Identification 
-Execution 
â€¢Communication 
â€¢Resources 

Fig. table An application software module consists of a module table 
and a set of C source files. A proprietary compiler, mtc, converts the 
module table to C source code. 
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structure is defined, along with a formal description of 
interfaces among the modules and the rest of the system. 
These standardization rules are followed by every soft 
ware designer, specify the guidelines for all interaction, 
and lay the foundation for a fully automated code genera 
tion process. Thus, machine-processed specification en 

forces standardization. 

All C code is then compiled and linked, yielding a num 
ber of object files, which are loaded unchanged into an 
EPROM card to be plugged into the computer module. 

Virtual Processor 
The main characteristic of this software concept is that 
the current configuration is invisible to all of the applica 
tions. They do not know which modules are assigned to 
which processor, how many processors are available, 
which interface cards are present, or where messages 
come from and where they go. Therefore, software devel 
opers must not make any assumptions as to where their 
applications will be executed. The only way modules are 
allowed to communicate with each other is by exchanging 
messages. 

These are prerequisites for a truly modular system in 
which applications can be mixed and matched according 
to a predefined functionality. With this in mind, it is ap 
propriate to define an abstract programming model that 
we call a virtual processor (see Fig. 1). This is a collec 
tion of or resources such as application priorities or 
data links. The virtual processor supplies the application 
programmer with all of the construction elements neces 
sary to implement functions effectively and straightfor 
wardly. The programmer can write functions that process 

Event 

Action 

Time-Driven Message-Driven 

A time period has 
elapsed or the 
expected message 
has not arrived. 

A message has 
arrived. 

Operating system starts 
execution tree. 

Operating system starts 
execution tree and passes 
pointer to message. 

Fig. of Kxeciilinn lives can be started after a certain amount of 
I inic has elapsed or when a certain event occurs. 

Component Monitoring System 
Software Development Environment 

All development was performed on HP 9000 workstations running under the HP-UX 
operating system and connected by a local area network. This includes the operat 
ing system, the development tools, and all applications and documentation. Each 
workstation had mass storage and emulation facilities (HP 54000) and could be 
tailored to specific needs. 

Starting out with only a few developers on a single HP 9000 Series 500, we ended 
up with engi ten HP 9000 Series 300 systems being used by 20 software engi 
neers toward the end of the project. 

Thanks evolu the power and flexibility of these HP-UX systems, the continuous evolu 
tion with to development environment proceeded very smoothly with respect to 
both its extent and its comprehensiveness. For example, all generic data (e.g., 
symbol was for message specification or tools for process automation) was 
automatically updated on all machines. As a consequence, at any point in time, 
identical processes were used project-wide â€” a prerequisite for smooth integration 
of the components. 

Since all application modules have the same form, it was possible to implement 
the standard generation processes only once. Besides the definition and evalua 
tion of the module table, a uniform process supports the implementation of any 
application. This turned out to be very helpful, for despite the different functions of 
the modules and the various inclinations of the development engineers, one al 
ways makes recurring features Â¡n any implementation. This makes software mainte 
nance example, for engineers other than the original programmer. For example, differ 
ent language options of a module can be generated without touching any code. 

In our environment, a single engineer had complete responsibility for specifying, 
designing, and implementing each software module. The activities of all of the 
developers had to be decoupled as much as possible. Since enforced synchroniza 
tion would have been intolerable, a major requirement for the development envi 
ronment was to support easy generation of running versions at all involved work 
stations. Here the Component Monitoring System's self-configuration, 
implemented as the boot process, proved valuable. All software modules are 
self-contained and independent. During the boot process the modules are initiated 
within tailored current run-time environment. This environment can always be tailored 
to meet the needs of the module under construction. 

The integration process is always executed the same way. The current versions of 
the operating system and other modules are collected from the workstations on 
the LAN and are loaded into the current work environment. A configuration table 
then assigns the modules to CPUs in such a way that each module under construc 
tion beforehand on an emulated CPU. Symbol tables can then be corrected beforehand to 
allow for symbolic access to all variables and functions. 

In summary, the extensive effort invested in the development environment and 
boot process has been very beneficial to the entire development and maintenance 
process, as well as to the product's quality. Other projects leveraging from the 
Component Monitoring System platform have profited and will continue to profit 
from this comprehensive and comfortable development environment. 

messages without having to pay attention to how the in 
formation is distributed. Concepts such as interrupts, task 
control blocks, and the message passing bus chip can be 
ignored by the programmer, who is free to concentrate on 
the medical application. Thus, the application program 
mer's task is to convert the specific functions into pro 
grams that can run on the virtual processor, and the oper 
ating system's task is to support this program module by 
means of the current hardware configuration and ensure 
that any two applications on a single CPU do not, inter 
fere with each other. 
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The features of the virtual processor are defined very 
formally, and the application programmer can only build 
on them. The interface specification of a module with 
respect to the virtual processor is found in the module 
table and is expressed in terms of the virtual processor. 

This abstract model and its formal presentation have 
proven to be extremely useful, both for separating tasks 
within the development process, and for automating the 
integration process. 

Execution Model 
Every module's program code can be considered a set of 
routines forming separate execution trees. The entry rou 
tines, that is, the roots of the trees, can be executed after 
the completion of a certain time period or upon reception 
of a message (Fig. 4). Since functional areas within a 
module may have different precedence requirements, ex 
ecution trees can be assigned to one of several applica 
tion priorities (see Fig. 5). For example, continuous wave 
form processing has the highest priority assignable, 
because it must process a batch of samples every 32 ms, 
and thus may delay the execution of all other functions if 
given a lower priority. 

The total computing capacity of a certain CPU may be 
distributed among several execution trees within several 
modules with several priorities. The overhead generated 
for context switching is minimal. 

C o n t r o l  M o d u l e  1  
Flow 

Module 2 .. .Modulen 

AP =  App l ica t ion  Pr io r i t y  

Sample Frame Timing: 

APO (Synchronous) 

Message Distributor 
32ms  

Fig. of Application module software can be thought of as a set of 
execution trees. These are assigned to application priorities, which 
are virtual processor resources. 

Symbolic Identif ication: 

Â « o u r c e j d  l o u r c e j o  c l u n n e l j d  c h s n i w L n o  

Allocation 
X at Boot Time 

12-bit Message Passing 
Bus Header 

Fig. 6. Every message has a composite symbolic identification, 
which is evaluated at boot time, when message headers are allo 
cated. 

The application programmer specifies the priority of each 
execution tree. At run time, the execution time is parti 
tioned externally to the module, without effecting its 
functionality. The programmer also specifies the amount 
of execution time required. The operating system guaran 
tees every application the timely execution of each tree 
and checks this in a continuous fashion. This is essential 
to the safety of patient monitoring. 

Communication Model 
As already mentioned, communication among software 
modules and interface cards is implemented as an ex 
change of messages. Message routing functions reference 
a 12-bit header, allowing for a maximum of 4096 different 
data streams. It would have been possible to assign all 
headers project-wide in advance, but the Component Mon 
itoring System employs a more elaborate process for es 
tablishing data paths. Every message has a composite 
(six-field) symbolic identification assigned. This is eval 
uated at boot time when headers are allocated (see Fig. 
6). Modules transmitting or receiving messages specify 
this symbolic identification within their module tables. 
This method allows the implementation of some impor 
tant concepts. If modules are installed more than once, 
say for multiple pressure lines, multiple similar data paths 
have to be established appropriately. This can be done 
externally to the modules at boot time simply by counting 
the source numbers shown in Fig. 6. Also, related mes 
sages can be collected into message classes by assigning 
identical keys, for example to the type field. Each mes 
sage of a specific class then shares a predefined struc 
ture. 

Programming with message classes represents a powerful 
method for dealing with configuration dependencies. The 
operating system supports broadcast messaging in a very 
convenient way. For example, all alarm messages gener 
ated by various sources are transmitted in messages of 
type ALARM. The central alarm management facility â€” an 
application software module â€” can specify that it wants to 
receive all alarm messages and then process them in the 
order that they appear. Using wild-card specifiers for the 
unknown fields in the symbolic identification keeps the 
module code receiving broadcast messages regardless of 
the current configuration. Blocks of memory for class 
members can be requested with a simple entry in the 
module table. The configuration dependencies are then 
resolved at boot time. 

Besides broadcasting, the Component Monitoring System 
operating system uses two other important types of com 
munication: static point-to-point and dynamic point-to- 
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Binding Interfaces 
To Applications 

Static Links 

Accessing Shared 
Resources 

Dynamic Links with 
Link Node Classes 

Standard Parameter Interlace 

Broadcast with Message Classes 

Message Passing Bus Broadcast Facility 

Application 
Level 
(Examples) 

Operating 
System Level 

Hardware 
Level 

Fig. 7. Different communication 
models are built on top of the mes 
sage passing bus broadcast func 
tion. 

point. Static links are private communication links be 
tween two entities, most notably application software 
modules and interface cards. Dynamic links are valuable 
when one resource is used by different application soft 
ware modules at different times. A temporary write to a 
screen area or the reading of softkeys are examples of 
this concept. Classes of dynamic link nodes can be de 
fined using the mechanism described above (link nodes 
are entry points into an application software module 
whose affiliated message is of some type specified in the 
receiver's module table). Fig. 7 summarizes how these 
communication types are built on the message passing 
bus broadcast facility to serve the upper application level. 

The standard parameter interface represents the backbone 
of patient data communication within the Component 
Monitoring System. It is a set of class definitions that 
forms a kind of logical data bus on which all patient data 
processing modules can broadcast their data. Any receiv 
er can then operate on waveform, numeric, alarm, or oth 
er messages in a completely decoupled fashion. 

Automated Configuration 
Modules contribute to the system's flexibility only if their 
handling is simple, comparable to the ease of handling 
patient parameter modules. To achieve this, the Compo 
nent Monitoring System development environment makes 
heavy use of automated processes, acting on formal inter 
face descriptions. The module table, for example, is com 
posed of the formal specifications relating to the specific 
module. When specifying communication behavior and 
execution requirements, the programmer can reference 
items of interest by means of symbolic names â€” the same 
names that can be found in the program source code. 

As long as the system is not powered, all hardware and 
software components appear unrelated. The computer 
module cards are all connected electrically, but no logical 
data path is apparent. The CPUs are "empty" (Fig. 8a). At 
boot, a monitor configuration table located on the central 
EEPROM tells the boot process how to arrange software 
modules on the CPU cards (Fig. 8b). Using the module 
tables in the individual modules, the boot process binds 
the modules into the run-time system. After the program 
code has been transferred to the CPU cards and all con 
figuration dependent data structures have been initialized, 
all modules will operate as expected. More than 40 appli 
cation software module instances are installed in the 
Component Monitoring System. 

In this process, the module tables supply all information 
necessary to install the data paths. In the first step, reser 
vations for message passing bus headers are accepted. All 
references to communication concepts such as message 
classes can then be resolved. The process is analogous to 
the link process for computer object code. More than 800 
message passing bus headers are allocated by the boot 
process; this gives an idea of the amount of communica 
tion that is required to operate the system. 

Delaying the linking of software modules until the boot 
process has, among others, one important advantage: it 

PRESS 
ECG 
TEMP 

mzm 

CPU1 CPU 2 CPU 3 

[I] 

PRESS 
ECG 
TEMP 

HQ-QH 
Press.1 
Press. 2 
Press.3 

ECG 
ECG.1 

TEMP 
Temp.1 
Temp. 2 

Monitor 
Configuration 

Table 
PRESS 3x on1 
ECG1x on 2 
TEMP2x on 3 

Utility Board 

Monitor 
Configuration 

Table 
PRESS 3x on1 
ECG 1 x on 2 
TEMP2X on 3 

C P U 1  C P U  2  C P U  3  U t i l i t y  B o a r d  

PRESS, ECG, TEMP: Module Code 

Press.x, ECG.x, Temp.x: Module Instance Data 

(b) 

Fig. to A monitor configuration table tells the boot process how to 
arrange the application software modules on the CPUs. 
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allows apparent. independent implementation and an flaws quickly become apparent. The overall system re- 
ease consistent. is maintenance that is normally true only mains consistent. This is an important contribution to 
o f  h a r d w a r e  e l e m e n t s .  s o f t w a r e  q u a l i t y .  

â€¢ Automated processes maintain flexibility. The evolution 
C o n c l u s i o n  o f  p r o c e s s e s  c a n  b e  c o o r d i n a t e d  c e n t r a l l y ,  w i t h  o n l y  a  
Both the software design and the Component Monitoring few engineers involved. Users are affected to a much 
System software development environment (see page 15) lesser degree. 
placed the emphasis  on decentral izat ion and decoupling A Qf ^ i tude of  the component  Monitor ing 
and  on  sof tware  a  and  formal iza t ion  of  in te r faces .  s  sof tware  deve l  n t  cannot  be  managed  in  a  
The latter provides the opportunity for comprehensive reasonable way without a very high degree of automation, 
automation, which in turn shows significant advantages: 
Automation of all external activities supports a smooth Acknowledgments 
integration of each module into the total solution. It elimi- The author would like to thank the engineers from the n a t e s  c o m m u n i c a t i o n  p r o b l e m s  w i t h i n  t h e  d e v e l o p m e n t  â € ž  , .  _  â € ž  â € ž  .  T 1  operating system group, namely MartÃ­n Bufe, Kai Hassing, 
t e a m  b y  s e p a r a t i n g  r e s p o n s i b i l i t i e s  a n d  e s t a b l i s h i n g  n o n -  â € ž  Holger Kaun, Paul Kussmaul, and Wolfgang Schneider, for 
corruptible entities. - _  .  t h e i r  i n g e n i o u s  w o r k  o n  t h e  o p e r a t i n g  s y s t e m  a n d  t h e  A u t o m a t e d  p r o c e s s e s  a r e  r e l i a b l e  a n d  e f f i c i e n t .  T h e y  o n l y  ,  development environment, as well as their professional 
have to be implemented once, and future users do not support for all application programmers, need an in-depth understanding to be able to use them. 
Automated processes enforce consistency. Deviations 
from a standard are prevented by the tools. Specification 
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Component Monitoring System 
Parameter Module Interface 
This System is the link between the component Monitoring System 
computer module and the patient parameter modules. It provides fast 
response, optimum use of the available bandwidth, configuration 
detection, and parameter module synchronization. 

by Winfried Kaiser 

The parameter module interface of the HP Component 
Monitoring System is the interconnection between the 
computer module and the module rack. The module rack 
can house a wide range and a varying number of parame 
ter modules. By means of transducers attached to the 
patient, the parameter modules measure the patient's vital 
signs. These devices include the ECG, temperature, and 
recorder modules, and many others. 

The major challenges associated with the design of the 
parameter module interface can be summarized as fol 
lows: 
The system must be able to support communication be 
tween the rack interface card in the computer module 
and a variety of parameter modules that may differ in 
such characteristics as the sampling rate of the analog 
signal, the number of signal input or output channels, the 
kind and amount of data that a parameter module re 
ceives from the computer module (control data) or sends 
to the computer module (status data), and mechanical 
size (1, 2, or 3 slots wide). 

It is a requirement of some clinical applications that cer 
tain waveform samples be measured and made available 
at an analog output with an absolute delay of less than 20 
milliseconds. 
It must be possible to plug any parameter module into 
any slot in the module rack. The system must identify the 
parameter module and its position within the rack (con 
figuration detection). 
The communication link of a system under power must 
not be influenced by plugging in or unplugging parameter 
modules or even entire racks. 
The parameter modules must be synchronized with each 
other. 
The link must support the detection of defective devices. 

Link Design 
The rack interface card in the computer module has one 
connector to interface to as many as four module racks. 
A module rack houses a maximum of eight single-width 

Decoding Logic (Gate Array) 

Parameter Module Interface 

RxM 

Module 1 Module 8 

Fig. 1. Up to 32 parameter mod 
ules are addressed using five ad 
dress lines. Decoding logic 
connects the addressed module to 
the receive and transmit lines of 
the rack inlcifacc in the computer 
module. 
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modules. This means that up to 32 parameter modules 
can be attached to one rack interface card. 

Connections are established to each of the 32 slots by 
means of five address lines (see Fig. 1). Using these ad 
dress lines, the decoding logic in the addressed module 
rack connects one of that rack's slots to the receive and 
transmit lines of the rack interface in the computer mod 
ule. 

The serial interface of the 80C51 microcomputer (internal 
UART, full duplex, 500-kbaud) is used for communication 
between the rack interface card and the addressed param 
eter module. Because of the fast response time require 
ment, it was decided that the parameter modules should 
transmit their information one sample at a time. The rack 
interface gathers all parameter samples over a period of 
32 ms and forms them into the corresponding message 
passing bus data. 

Communication Protocol 
The rack interface controller starts the communication 
with the parameter modules with a special identification 
cycle. All possible rack slots are addressed, and a special 
control byte requests identification. A connected module 
responds by sending its device identification, hardware 
and firmware revision, and other parameter-specific data. 

Using this identification and an internal reference table, 
the rack interface comn'̂ fae H'̂  nor̂ dCQgM'Â·v da^a at>ou  ̂the 
connected device types. This includes each device's sam 
pling rate and its number and kind of transmit and re 
ceive bytes. After scanning all of the slots, the system 
knows which parameter modules are available. 

Special digital logic together with a simple connected/ 
not-connected connector pin inside each parameter mod 
ule enables the rack interface to recognize whether or 
not a module is plugged into any slot, or whether a mod 
ule is defective. If a parameter module is connected, it 
responds when it receives the control byte from the rack 
interface. If a module is not connected, the incoming byte 
is sent back to the rack interface card without any delay. 
If there is no response at all a defective module is recog 
nized. 

Scan Table 
After the system determines which parameter modules 
are present, a scan table is generated in the rack inter 

face to describe and control all subsequent communica 
tion. The scan table consists of 16 2-ms time slices. The 
table entry for each time slice specifies which parameters 
are polled during that time slice (see Fig. 2). 

The arrangement of the scan table depends on the speed 
classes of the parameter modules connected. There are 
five speed classes based on the sampling rate of the pa 
rameter modules: 2-ms, 4-ms, 8-ms, 16-ms, and 32-ms. The 
2-ms parameters are entered in each column of the scan 
table, the 4-ms parameters in every other column, and so 
on. A special algorithm guarantees that the entries are 
made so that each device is addressed at fixed intervals. 

The free part of the scan table is used to address slots 
that have no modules inserted. When a parameter module 
is plugged into the rack it is immediately recognized and 
activated in the scan table, which contains the superset 
of all parameter modules that are allowed. A module that 
is removed from the rack is deactivated. Thus it is possi 
ble to connect and disconnect any parameter module dur 
ing normal monitoring. 

Analog output devices that need a fast response time are 
entered at the end of each time slice and receive the data 
from the selected parameter module within the same time 
slice. The total delay from input to output is less than 2 
ms (see Fig. 2). 

Parameter Module Interaction 
When a parameter module is addressed by sending it a 
message (receive interrupt), it responds immediately by 
transmitting a predefined internal data block, typically 
consisting of waveform and status data. After the trans 
mission, the parameter module starts an analog-to-digital 
conversion cycle of the patient signal or performs other 
tasks depending on the control information in the re 
ceived message. The result of the analog-to-digital conver 
sion and status information are stored into a module's 
internal data block. This data is transmitted the next time 
the parameter module is addressed. Since communication 
with a particular device always takes place after a fixed 
interval, the module can synchronize itself with this poll 
ing sequence. 

At the 500-kbaud data rate of the parameter module inter 
face, a typical communication cycle with a parameter 
module with one waveform takes about 120 microsec- 

2 ms 

-Time (ms) 

Fig. 2. The scan table entries 
specify which parameter mod 
ules are addressed in each of 
sixteen 2-ms time slices. Ana 
log output devices that need 
data immediately receive it 
within the same time slice. 

20 October 1991 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



onds. When communication with one module has been 
completed, the next device in the scan table is addressed. 

This procedure ensures both optimum use of the available 
bandwidth and synchronization of the parameter module 
and the rack interface card. 

Summary 
The parameter module interface represents a very flexible 
solution for connecting a wide variety of modules to the 
Component Monitoring System computer module. Al 

though the requirements addressed by the interface are 
complex, the final implementation is both versatile and 
rugged, and was kept relatively simple by integrating 
some of the decoding logic. 
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Measuring the ECG Signal with a 
Mixed Analog-Digital 
Application-Specific 1C 
Putting the ECG data acquisition subsystem into a Component Monitoring 
System low module mandates high-density packaging and low 
power consumption, and was only possible by implementing major 
elements of the circuit in a large mixed analog-digital ASIC. 

by Wolfgang Grossbach 

Nearly everyone is familiar with one of the most impor 
tant medical parameters â€” the electrocardiogram, or ECG. 
The electrical voltages created by the heart have been 
well-known to the medical community for nearly a centu 
ry. In the beginning the ECG was measured by sensitive 
galvanometers with the patient's hands and feet placed in 
vessels filled with saline solution. Improvements in the 
assessment of diagnostic ECG signals have been closely 
related to the evolution of electronics, great strides being 
made when amplifying devices such as vacuum tubes and 
later transistors became available. Today, low-noise opera 
tional amplifier circuits are state-of-the-art for ECG signal 
processing. 

Physiologically, the polarization and depolarization of the 
heart's muscle mass creates a three-dimensional electrical 
field that changes with time. As a result, voltages can be 
measured on the surface of the body that represent the 
pumping cycle of the myocardium. A strong effort has 
been made to standardize the points at which the volt 
ages should be measured. The most widely used are three 
differential voltages: From right arm (RA) to left arm 
(LA), from LA to left leg (LL), and from LL to RA. These 
voltages are known as ECG leads I, II, and III. The right 
leg electrode (RL) acts as the neutral pole in this system. 
This configuration is known as the Eindhoven triangle 
(see Fig. 1). 

ECG Signal Characteristics 
The amplitude of the ECG signal as measured on the skin 
ranges from 0.1 mV to 5 mV. The frequency extends from 
0.05 Hz to 130 Hz. Physiological signals like the ECG dif 
fer from artificial signals in that they are not reproducible 
from one time segment to another. They are more statisti 
cal in nature and have larger variations in signal charac 
teristics than, say, a signal generator output. This places 
additional requirements on the measurement system, espe 
cially the analog input stages. Although the average ampli 
tude is only around 1 mV, there are large dc offset volt 
ages because of electrochemical processes between the 
electrode attached to the patient and the patient's skin. 
These can be as high as Â±500 mV. Also, the contact resis 
tance between an electrode and the body surface can 
vary widely and reach values around 1 Mil. In addition, 
the system must be capable of detecting that an electrode 
has fallen off the patient. Perhaps the largest constraint is 
the presence of 60-Hz or 50-Hz power line noise. The 
human body acts like the midpoint of a capacitive divider 
between one or more power lines and ground. Thus, com 
mon-mode voltages as high as 20V p-p can be superim 
posed on the body. Eliminating this source of noise is one 
of the major tasks of an ECG amplifier. Fortunately, the 
ECG signals are differential signals while the power line 
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Fig. 1. Placement of EGG electrodes. The colors of the cabling 
system the standardized. The right leg (RL) connection acts as the 
neutral pole. (In monitoring applications the RL and LL connections 
are often as shown here and not on the legs.) 

voltages are common-mode, so the noise can be reduced 
with differential amplifiers. 

Another requirement results from artificial pace pulses 
used to stimulate the heartbeat of some patients. Pace 
maker devices are implanted into the chest, generating 
small pulses up to IV p-p at frequencies in the kilohertz 
range. Pace pulses are superimposed on the ECG signal 
and have to be detected to differentiate them from the 
peak value of the ECG signal, called the QRS complex. 
This is important because the heartrate measurement is 
based on this QRS signal, and an incorrect interpretation 
would result in an incorrect value. 

In emergencies when the heart stops beating (ventricular 
fibrillation), a commonly used procedure is to apply a 
voltage pulse of about 5 kV p-p with a 5-ms duration to 
synchronize the neural stimulus of the heart's muscle 
mass and bring it back to normal operating conditions. 
Because of the high voltages needed to defibrillate a pa 
tient, the inputs of the ECG circuit must be protected. 
Other sources of noise are electrosurgery devices, which 
are used in operating rooms as electronic scalpels. These 
devices contain high-frequency currents in the megahertz 
range. The high current density at the tip of the electrode 
coagulates the protein, thereby stopping bleeding. The 
ECG module must provide additional filtering against this 
high-frequency noise. 

Integrated Solution 
The design goals for the Component Monitoring System 
ECG module included reduced cost, reduced size, mini 
mum power consumption, and increased reliability and 
functionality compared to the current patient monitor 
generation. 

The target size was a single-width parameter module. This 
module measures only 99.6 mm by 36 mm by 97.5 mm 

(3.9 in by 1.4 in by 3.8 in). It was therefore obvious that 
we would have to use surface mount technology to meet 
the size objective. In addition, it soon became apparent 
that a large percentage of the electronic circuit would 
have to be integrated in silicon if the entire device was to 
fit into a single-width module. This and the need for cost 
reduction on such a high-volume parameter module as the 
ECG module clearly indicated that an application-specific 
integrated circuit (ASIC) would be the appropriate solu 
tion. 

The investigation revealed that the chip size we had in 
mind and the mixed analog-digital design were real chal 
lenges for a fully custom ASIC. Our plan was to integrate 
the following function blocks into a single chip: 
Full three-channel ECG amplifier with various filter 
stages of both analog and switched capacitor type 

1 Precision resistor network for the weighting function 
Three-channel lead select multiplexer 
Precision differential amplifiers with high common-mode 
rejection ratio 
Eight-channel multiplexer for sequential scanning of all 
analog signals 
Bandgap voltage reference 
10-bit analog-to-digital converter (ADC) 
Digital control logic for switching filter corner frequen 
cies, multiplexers, and other circuits 
Serial interface to connect the chip with the surrounding 
circuits. 

To be able to integrate all this, a 3-|Om CMOS process 
was chosen. It is a p-well LOCOS process with polysilicon 
gates and ion implantation. NMOS and PMOS field-effect 
transistors are combined. Also available are n-channel 
JFETs and pnp bipolar transistors. The thin-film resistors 
are laser trimmable to within 0.1% matching. Available 
cells include JFET operational amplifiers, bipolar opamps, 
switched capacitor filters, 8-bit to 14-bit analog-to-digital 
and digital-to-analog converters, and sample-and-hold am 
plifiers. 

The Electrocardiograph ASIC 
The basic functions of the ECG circuit can be seen in 
Fig. 2, which shows one of the three independent chan 
nels. The inputs are switched to the RA and LA elec 
trodes as active inputs. The RA and LA inputs of the chip 
are connected to the patient. Protection circuits against 
ESD and defibrillator pulses and current-limiting resistors 
are provided outside the chip on the printed circuit 
board. JFET input opamps amplify the signal five times 
and act as high-impedance input buffers. A precision re 
sistor network (Wilson network) sums the various elec 
trode voltages to achieve the standard voltages for the 
different ECG selections. The multiplexer selects the ap 
propriate lead voltages from the resistor network. The 
10-kHz low-pass filters act as prefilters for anti-aliasing 
purposes to reduce the high-frequency components in 
case an electrosurgery unit or other high-frequency noise 
source is coupling into the module. These are analog fil 
ters. They protect the switched capacitor filters with their 
time-discrete sampling system against unwanted aliasing 
disturbances resulting from high-frequency noise. 
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Fig. 2. Basic structure of the EGG 
ASIC (one of three channels). 

The RL input acts as the neutral pole, but is not directly 
connected to analog ground. It is the low-impedance out 
put stage of an inverting summing amplifier (called the 
right leg drive) which serves as a feedback circuit, further 
reducing common-mode power Une voltages. The com 
mon-mode signal present at the output of the lead select 
multiplexer is phase inverted and fed back to the patient, 
thus being subtracted from the common-mode voltage 
present at the inputs. This helps eliminate unwanted pow 
er line noise. 

The difference between the two selected electrode signals 
is derived in the differential amplifier section, which has 
a gain of one. Up to that point, all gain variations and 
tolerances affect the common-mode rejection. Therefore, 
these stages have laser-trimmed resistors where appro 
priate. 

At the outputs of the differential amplifier in each of the 
three channels, the signal path is split into two parts. For 
the two main channels, the auxiliary path goes out of the 
integrated circuit to the pace pulse detector. The pace 
pulses are identified by their higher-frequency content in 
the range of 1 to 4 kHz, but only the presence of a pace 
pulse has to be detected, not the time dependent signal 
itself. Therefore, it is unnecessary to construct the whole 
signal path with this large bandwidth. After the pace 
pulse detector output, low-pass filtering of the EGG signal 
begins. 

For EGG filtering, a minimum lower corner frequency of 
0.05 Hz is required. The large capacitor and resistor val 
ues needed could not be integrated and therefore the 
signal is routed from the chip into external filter sections, 
one for each channel. By means of internal switches, 
three low-end corner frequencies (0.05 Hz, 0.5 Hz, 3.5 Hz) 
and two high-end corner frequencies (40 Hz and 130 Hz) 
can be selected. 

The signal flows out of the chip, through the external 
filters, and back into the chip. It then goes through the 
main gain stage, which has switchable gain of 40 or 160 
depending on the signal amplitude and the resolution 
needed on the screen. After passing the gain stage, the 
signal is filtered with a second-order switched capacitor 
stage to achieve the corner frequency of 130 Hz with as 
small a tolerance as possible. 

The three analog channels described so far are connected 
to the inputs of a one-of-eight multiplexer, which sequen 
tially scans these three channels and five auxiliary chan 
nels every 2 milliseconds. The output feeds into the ADC, 
a 10-bit converter that has less than Â±1 LSB differential 
nonlinearity and a conversion time of 20 (is. An 
8-by-10-bit dynamic random access memory holds all the 
conversion results temporarily until they are transmitted 
via a parallel-to-serial converter out of the chip to the 
module microprocessor. In the opposite direction, all con 
trol information is transferred into the chip over this seri 
al interface and latched. The use of a serial data conver 
sion scheme made it possible to use only three output 
lines and a 28-pin package. 

Fig. 3 is a photograph of the EGG ASIC chip. 

Pace Pulse Detection Circuit 
The dual pace pulse detector is also an ASIC. Its analog 
parts are built entirely in switched capacitor technology. 

.tWLÂ«jÂ«jÃ­' r i    . , _  

" lÃ¯fK p 5^1. 

Fig. 3. Photograph of the EGG ASIC wafer. The analog functions 
cover much larger areas than the digital parts. 
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This had the advantage of avoiding laser trimming, mini 
mizing wafer area, and thus reducing cost. This chip gen 
erates two logic output signals for each channel, indicat 
ing whether a pace pulse with either positive or negative 
polarity is present in the input signal. The information is 
polled by the microprocessor and sent to the algorithmic 
software. 

Test Considerations 
It was clear from the beginning that testing the ECG chip 
would be a challenge because of the large number of 
parameters to be measured. The specifications describing 
the functionality are split into two parts: internal and ex 
ternal specifications. The internal specifications can be 
tested with wafer probes and help the vendor optimize 
the production process. They are consistent with the ex 
ternal specifications, which are measurable from outside 
the chip and are accessible to the customer. The external 
specifications are the link between the ASIC design and 
the printed circuit board design and were used as guide 
lines throughout the design and verification process. Auto 
mated test equipment has been set up at HP to test the 
ECG chip via its serial interface. The same test equipment 
is used by both the vendor and HP to reduce the number 
of false measurements resulting from different measure 
ment setups. 

Results 
Fig. 4 shows the printed circuit boards of the M1001 ECG 
module. All components between the ECG ASIC (the larg 
er one) and the input patient connector are for protection 
and filtering against defibrillator pulses, electrostatic dis 
charge, and electrosurgery units. The following table gives 
an overview of the two ASIC chips (PPD is the pace 
pulse detector): 

Fig. 4. M1001 ECG module printed 
circuit boards. The large capacitors 
on the left board are part of the ex 
ternal filter stages. The ECG ASIC 
is just in front of these capacitors. 
The PPD is to the left of the ASIC. 
The right board contains the digital 
parts of the module. 

Item 

Die Size 

Analog Functions 

Digital Functions 

Number of Transis 
tors 

Number of Digital 
Gates 

ECG ASIG PPD ASIC 

6.22 by 6.27 mm 3.43 by 3.99 mm 

24 

4 

Â«6000 

= 550 

28 PLCC Number of Pins 

Power Consumption 275 mW max. 

Dynamic Range Â± 3 V 

Overall Analog Gain 800 

12 

2 

= 2000 

= 200 

20 PLCC 

45 mW max. 

Â±3V 

Noise (referred to 
input) 

2LSB 

The main problem that was faced in this design project 
was the complexity of the system, which caused side ef 
fects that were not visible in the beginning. The die size 
was too big for normal packages, so packages with larger 
cavities had to be found. The simulation time was longer 
than expected because of the large number of compo 
nents inside. 

In summary, the design objectives were met. The ECG 
performance is state-of-the-art, and significant reductions 
in cost, power consumption, size, and component count 
were achieved in comparison to a discrete solution, 
which probably would have required a double-width 
module. 
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A Very Small Noninvasive Blood 
Pressure Measurement Device 
This small assembly covers the entire blood pressure measurement 
spectrum from neonates to adults. The packaging of the air pump 
assembly makes several contributions to the objectives. 

by Rainer Rometsch 

The noninvasive blood pressure module of the HP Com 
ponent Monitoring System is a double-width parameter 
module used to measure and calculate a patient's systolic, 
diastolic, and mean blood pressure. The method is based 
on inflating a cuff on the patient's arm until all blood 
flow is suppressed in this extremity. The pressure in the 
cuff is then slowly deflated, and by using the oscillomet- 
ric measurement technique, both the high and low blood 
pressures -and the mean value can be determined. 

Physically the noninvasive blood pressure module consists 
of two parts. One is the electronic board, which contains 
the power supply, the signal acquisition circuitry, and the 
interface to the computer module. The other is the pump 
assembly, which is responsible for the controlled inflation 
and deflation of the cuff. 

Requirements imposed on the pump assembly vÂ»~n-: 
1 Low parts price 
1 Minimum number of parts 
1 Robust construction 
1 Easy to assemble in the parameter module 
1 Low power consumption at the highest possible pump 
capacity. 

Because of the required size of the pump assembly (it 
had to fit in a single-width parameter module), and the 
need to reduce the number of individual parts, a totally 
new approach was taken in the design of this mechanical 
part. The solution implemented is a self-contained func 
tion block allowing a stringent separation between the 
electronic printed circuit board and the pneumatic system 
(see Fig. 1). 

The Pump Assembly 
The pump assembly consists of the pump and two valves. 
The pump is a membrane device driven by a dc motor. 
To meet the requirements of the application, the pump is 
optimized for high pumping capacity and low air leakage. 
Air leakage is a. big concern because the volume in the 
cuff has to >â€¢ d ieflated in a highly controlled fashion. This 
is especi?\y difficult for neonatal applications, because 
neonatf.i cuffs have very small volumes. We solved the 
problem by incorporating a reflow valve within the pump 
module. This pressure valve opens at low flow rates, and 
therefore does not increase power consumption. The im 
portant thing is that it seals tightly at a very low reflow 
rate. 

Fig. 1. Pump assembly of the Component Monitoring System nonin 
vasive blood pressure measurement module. 

The second element in the pump assembly is a pair of 
valves, flanged to a machined aluminium extrusion. Two 
valves are needed to provide a fail-safe circuit that will 
comply with the safety requirements imposed on noninva 
sive blood pressure measurement devices. These two 
valves have considerably different flow characteristics. By 
automatically switching between the two valves, one non- 
invasive blood pressure module covers the entire applica 
tion spectrum from neonates' cuffs all the way to adult 
thigh cuffs. 

The aluminium extrusion is designed to replace all the 
necessary tubing between the pump and the valves. It is 
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therefore possible to flange the mounted valve onto the 
pump without any additional rubber tubing. This contrib 
utes to a part count reduction and simplifies production 
dramatically. 

The only connections that have to be made with the 
pump assembly are a 15-mm-long rubber tube to the non- 
invasive blood pressure connector in the parameter mod 
ule, and a power connection to the electronic board for 
the dc pump. The rubber tube to the noninvasive blood 
pressure connector is essential because this flexible tub 
ing detaches the pump from the the parameter module 
housing and thus helps damp acoustic noise caused by 
mechanical vibration. 

Packaging 
The entire pump assembly is encapsulated in a polyure- 
thane package. This relatively simple part contributes in 
more than one way to the goals of the overall solution. 
All noise generated by the dc pump is muffled by the 
package to a degree that is acceptable in the hospital 
environment. The pump assembly survives the 1-m drop 
test because sufficient kinetic energy is absorbed by the 
package to avoid damage to the mechanics. Packaging of 

this part for shipment from the vendor to HP has been 
minimized to a simple protective cover. 

The outline of the foam package is identical to the inner 
contour of the parameter module. Therefore, no additional 
parts are needed to embed the pump assembly in the 
inner enclosure of the parameter module. The elimination 
of additional screws or clamps has helped reduce produc 
tion time and part count. 

Conclusion 
The Component Monitoring System noninvasive blood 
pressure module meets all of the above described objec 
tives. Because the pump assembly and the electronic 
board are delivered as prefabricated parts, the total time 
to build the module has been reduced to about two min 
utes. The result is a small, robust, self-contained noninva 
sive blood pressure module, to our knowledge one of the 
smallest noninvasive blood pressure devices in the world. 
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A Patient Monitor Two-Channel 
Stripchart Recorder 
Small enough to fit in a double-width HP Component Monitoring System 
parameter module, this recorder embodies simplicity of design, a highly 
tooled mechanism, and sophisticated printhead power management. 

by Leslie Bank 

The medical environment requires a record of the care 
that has been given to a patient, both for the patient's file 
and as a legal document. For patient monitoring equip 
ment like the HP Component Monitoring System, the re 
cord has traditionally been a continuous strip of paper of 
various widths. An example of a recording from the Com- 

(90DOA) TEST DATA 

29 JAN 91 12:38 

ALARMS SUSPENDED 

HR 68 

ST1 -08 (Lead 11) 

ST2 0.9 (Lead V) Â¡so 

PULSE 60 

ABP 128/78 (91) 

PAP 38/17 (23) 

CVP (9) 

PAWP -?- 

25 irm/sec 

BED 20 

Tskin 40 0 

T2 40 8 

Tsk-T2 0.0 

ponent Monitoring System's two-channel recorder is 
shown in Fig. 1. Fig. 2 is a photograph of the recorder. 

In the past, the hospital had three options to provide re 
cording capability for a patient, each of which was less 
than ideal: 

Fig. data. Typical two-channel Stripchart recording of patient data. 
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Fig. 2. The HP Component Monitoring System two-channel recorder 
module. 

' Purchase a recorder for every bedside. This is very ex 
pensive in these days of cost containment. 

â€¢ Use a central, shared recorder. With much of the patient 
care given at the bedside, not having a recorder nearby is 
a distinct disadvantage. 

> Mount the recorder on a cart and wheel it to the bedside 
when needed. This takes up too much of the available 
room at the bedside and is also inconvenient. 

The Component Monitoring System philosophy of allowing 
the monitor configuration to change with the patient's 
needs extends to the recording function. The two-channel 
recorder can be moved around like any other parameter 
module. This approach, along with the requirements for 
ease of use, high reliability, high performance for many 
types of applications, low manufacturing cost, and low 
power led to the following set of major specifications: 

â€¢ Size: Double-width parameter module 
â€¢ Power consumption: Approximately 6 watts maximum 
â€¢ Number of waveforms: 3 
> Lines of character printing: 3 
â€¢ Paper: 50-mm-by-30-m rolls (fan-fold paper would not fit 
in the desired package size). 

These specifications resulted in a number of major techni 
cal challenges. 

Size. Pitting the paper, motor and drive mechanism, elec 
tronics, and supporting structure into a package of this 
size was a major accomplishment. 

Power Consumption. Chemical thermal paper is used in this 
recorder. A printhead consisting of a linear array of resis 
tors is in constant contact with the paper. When power is 
applied to one of these resistors, the resistor gets hot and 

a mark is made on the paper. This, combined with the 
power requirements of the motor and electronics, normal 
ly would require much more power than the 6 watts that 
are available. In addition, there can be no ventilation in 
the housing. Meeting the high-temperature specifications 
was difficult because of the internal heat generated by 
the power-consuming components. 

Ease of Use. Recorder operation should be flexible to meet 
the various medical applications. It should be intuitive for 
the occasional user. Most of the Component Monitoring 
System recorder operation is part of the normal control 
structure. The difficulty for the recorder design team was 
to make the paper loading easy while not using any pow 
er to aid paper feeding. 

Reliability. Recorders, which have moving parts that wear, 
tend to be less reliable than equipment that does not 
have moving mechanical parts. A simple mechanical de 
sign along with high-quality components and a severe 
testing program resulted in a highly reliable product. 

Manufacturing Ease. This recorder was designed for 
high-volume assembly. Much effort was spent in minimiz 
ing part count, in using the molded parts to perform mul 
tiple functions, in designing adjustments out, and in mak 
ing the instrument easy to test. 

Mechanism 
Paper is loaded by opening a door and inserting the roll 
of paper into the paper compartment. The paper is then 
threaded around a drive roller and pulled taut, and the 
door is closed. As the door is closed, a cam is engaged 
which lowers the printhead. The roller is driven by a 
stepper motor which is connected to the drive roller by a 
drive belt. The roller is driven when the motor turns. The 
paper has enough wrap around the drive roller to ensure 
that it can be driven under the printhead. Enough back 
tension must be provided to make the paper track proper 
ly, yet too much tension increases the motor torque re 
quirements, which in turn increases the power required. 
This turned into an interesting design trade-off. Sealed 
ball bearings are used on the drive roller to minimize 
power requirements while keeping paper dust out of the 
bearings. 

Two injection-molded frames form the chassis. The print- 
head and drive roller are captured between the chassis 
halves, while the motor, paper door, power supply board, 
and digital board are all mounted to the outside of the 
chassis. The entire assembly is enclosed in a double- 
width module case. 

Electronic Hardware 
The digital board contains two Intel 80C196 16-bit micro 
controllers which communicate with each other via a 
shared RAM. Each microcontroller contains a serial port. 
The I/O processor uses its serial port to communicate 
with the monitor's computer module via the parameter 
module interface (see article, page 19). It receives digital 
commands, waveforms, and text data from the monitor. It 
interprets the commands and transforms the data into a 
format compatible with the printhead. It also monitors the 
front-panel and door-open switches and the paper-out sen- 
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sor. The I/O processor communicates the recorder status 
to the monitor. 

The other processor takes the information from the I/O 
processor and ships it to the printhead via its serial port. 
The energy applied to each resistive dot in the printhead 
is tightly controlled by varying the printhead strobe times. 
This ensures high-quality printing and long printhead life 
with minimal energy use. This processor varies the print- 
head strobe based upon printhead temperature, resis 
tance, and voltage, which are measured by the onboard 
analog-to-digital converter. The motor speed data is also 
sent to the motor drive chips, which are located on the 
power supply board. 

The power supply board transforms the 60 volts received 
from the monitor into 15 volts required by the printhead 
and motor, and into the 5 volts required by the logic. This 
power conversion is performed by a switching power sup 
ply with a typical efficiency of 83%. The motor is driven 
by two stepper motor chips which, under control from 
the digital board, microstep the motor to provide accurate 
chart speed with minimal power. The peak energy 
supplied to the printhead is provided by a large capacitor. 
In case of extremely heavy printing, the power to the 
printhead may sag. To prevent the 15-volt supply from 
sagging" too much, a current limiter is placed between the 
printhead energy storage device and the 15-volt supply. 
Finally, the optical isolators for the serial data lines to 
the monitor are on this board. 

Printhead Control 
Character and grid generation are provided by the record 
er. The selected characters and grid are combined with 
the waveform data, rasterized, and sent to the printhead 

to energize a number of resistors (dots) in the printhead. 
The printhead is loaded three times for each dot printed. 
If the dot has not been fired and is "cold", it is fired for 
all three loads. If the dot has been fired in the last cycle, 
it is "hot" and is fired for only one load. If the dot has 
been fired two cycles ago, it is "warm" and is fired twice. 
This results in a historical firing of each individual dot 
and precise temperature control of each dot. In addition, 
each of the three loads is accompanied by a strobe of the 
printhead. Each strobe time is varied based upon print- 
head voltage, temperature, resistance, and chart speed. 
For example, as the temperature of the printhead in 
creases, the amount of energy provided to all dots de 
creases. This results in a lower printhead temperature 
rise and less thermal shock to the dot resistors, while 
providing consistent printing quality. In addition to all 
this, the entire printed area is dithered up and down over 
time. This equalizes the use of all the printhead resistors 
and improves the life of the printhead. 
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Patient Monitor Human Interface 
Design 
A design based on human factors leads to an intuitive and easy-to-use 
human interface for the HP Component Monitoring System. 

by Gerhard Tlvig and Wilhelm Meier 

The design of the human interface for the HP Component 
Monitoring System involved a coordinated effort of R&D, 
marketing, and industrial design, working with valuable 
inputs and feedback from the principal users â€” the inten 
sive care unit (ICU) nurse and the anesthesiologist. Fig. 1 
illustrates the basic elements of the design process for 
the human interface. 

The functionality of the Component Monitoring System 
goes beyond the classical real-tune patient monitoring 
functions. The monitor offers extensive support for medi 
cal procedures, such as cardiac output and S-T depres 
sion and elevation measurements, a powerful data man 
agement capability with various calculation and report 
facilities, and a review facility for alarms and patient in 
formation from "another bed" using the proprietary HP 
serial distribution network (SDN). This functional com 
plexity had to be handled with a single consistent and 
simple operating structure so that it did not lead to a 
complex user interface. Because it is a key element in the 
user's ultimate buying decision, usability was a critical 
issue in the design. 

Human Interlace Task Force 

Clinical Inputs (Nurses, Doctors) 

HP Human Factors 
â€¢â€¢Â»â€¢ 

Concept for Control Structure and 
Screen Layout 

Screen Cookbook 

Usability Test 

â€¢ User Advisor Inputs 

Human Interface 
ERS Freeze 

Final Screen Cookbook 

Fig. 1. Design process for the human interface of the HP Compo 
nent Monitoring System. 

Environments and Users 
The Component Monitoring System is used in a variety of 
environments, including the surgical ICU, the neonatal 
and cardiology ICUs, and the operating room. There is a 
wide spectrum of users, including the nurse in the ICUs 
and the nurse anesthetist, the anesthesiologist, and the 
perfusionist in the operating room. 

The primary user in the operating room is the anesthe 
siologist. Some of the tasks performed are of a clerical 
nature, such as logging patient and life support device 
data, observing the monitor, and scanning the area. There 
are also physical tasks, not directly related to the moni 
tor, such as patient preparation, administration of drugs 
and fluids, and patient observation. 

In the surgical and neonatatal ICUs, 90% of users are 
nurses. The tasks performed by the nurse include 30% 
clerical activities, such as recording medical data, writing 
down and checking doctors' orders, writing down the 
medication plan, and filling out the patient's flowsheet. 
The other 70% of the tasks performed are of a physical 
nature, such as administering fluids and drugs, taking 
measurements, making physical examinations, ensuring 
patient hygiene, and performing medical procedures. 

In most cases, nurses and physicians have no computer 
experience. It can be expected that many of them will 
have doubts about the introduction and use of comput 
er-based monitoring equipment. Therefore, it was consid 
ered advisable not to make the Component Monitoring 
System look like a computer. 

The main focus is on the patient. The nurses and the phy 
sicians do not have time to interact extensively with the 
monitor. They are in a crowded and stressful environ 
ment, where it is not unusual to encounter critical situa 
tions requiring immediate action to prevent degradation of 
the patient's situation. Clinical personnel also face a wide 
variety of equipment from different manufacturers, all 
with different user interface standards. 

Equipment training often includes no more than one or 
two hours of instruction at monitor installation time. The 
turnover of the nursing staff may be very high. Because 
the workload is heavy, there is no time to read extensive 
operating manuals, instruction cards, or help texts. Be 
cause of economic pressures on the health care system 
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and clinical personnel shortages, especially in nursing, 
less time is available for in-service training. 

All of this suggests that intuitiveness and ease of use are 
fundamental requirements for the Component Monitoring 
System human interface. 

Design Objectives 
As the performance and computational power of a patient 
monitor increase, the challenge is how to present and use 
the medical information provided by the monitor in an 
easy-to-interpret, simple, interactive way that will lead to 
more efficient patient care delivery. It is possible to con 
trol a monitor with two buttons and a lot of key pushing 
and watching. It is also possible to have 100 buttons or 
more for the same job and assign a distinct function to 
each button. An optimum is somewhere in between. 

The main goal was to design a consistent control struc 
ture for all applications in the monitor and across all 
present and future members of the Component Monitoring 
System family. Working towards a simple model in the 
user's mind was considered more important than reducing 
the number of keystrokes required to access a given func 
tion to an absolute minimum. Having formed a model of 
how the system operates, the user can extrapolate how a 
particular function might work. If the system is consis 
tent, the user's prediction will work, the system will be 
perceived as easy to use, and user acceptance and satis 
faction will increase. The control structure needs to be 
self-explanatory to the novice user and allow fast access 
to the experienced user. Access to critical functions re 
quiring immediate action (like silencing an alarm or freez 
ing the screen) should be simple and fast and should not 
interrupt the user's activity in a given operating window. 

Minimizing operating complexity by reducing the number 
of nested operating levels and thus eliminating the need 
for "navigation aids" has been a major quantitative goal. 
Each Component Monitoring System function is accessible 
within three operating levels, reinforcing the same access 
to all functions. There is a home key, labeled Standard Dis 
play, which always brings the user back to the standard 
resting display. Because monitoring functions vary in their 
complexity, the human interface design implements simple 
things in an easy way while making complex tasks possi 
ble. 

Elements of the Human Interface 
The main elements of the Component Monitoring System 
human interface can be seen in Fig. 6 on page 12. All 
user interaction and data visualization take place through. 
a human interface unit consisting of a 14-inch high-resolu 
tion display (monochrome or color) and a keypad inte 
grated in the screen bezel. Optionally, a remote keypad 
can be attached to the Component Monitoring System 
through the standard HP-HIL interface. The remote key 
pad duplicates all of the keys on the screen bezel and 
has an additional alphanumeric entry capability. The 
screen bezel also contains the sound generator for the 
alarm interface and the visual alarm indicators, which are 
color-coded alarm lamps (red, yellow, green). The controls 
and lights on each patient parameter module are inte 
grated into the overall operating concept. Each 

single-width parameter module has one or two keys. One 
key is always a setup button, which allows direct access 
to the setup menu for that parameter module. The other 
key is optional and allows quick operation of functions, 
such as zeroing a transducer, starting a cardiac output 
measurement, or calibrating the CÃœ2 analyzer. 

Most operations are controlled by a mix of twelve hard- 
keys and seven softkeys. A group of arrow keys on the 
right side of the keypad (up, down, left, right, confirm) 
support the pointing and select functions of the user in 
terface. 

Hifsim and Its Benefits 
The control structure and the screen layout were exposed 
to nurses, physicians, and anesthesiologists in the early 
stage of the design process. This was possible through 
the use of a simulation tool. 

At the time the human interface design started, very few 
simulation tools were available, and in most cases they 
didn't match the designers' requirements. We chose to 
develop our own simulation tool, called Hifsim. This took 
four engineer-months. Hifsim runs on an HP 9000 Series 
300 workstation under the HP-UX operating system. 

The intended use of the Hifsim tool for usability tests 
made it mandatory to come up with a keypad integrated 
into the screen bezel to resemble as much as possible the 
way a nurse would interact with the monitor. Similar pix 
el resolution and useful screen size to that of the final 
monitor were mandatory. 

Special hardware was developed for the simulator. It con 
sists of a metal cover over the workstation's 19-inch dis 
play, leaving an opening similar to the Component Moni 
toring System's useful screen area. An HP-IL button box 
was modified as a keypad replacement and was inte 
grated into the cover. The electronics of the button box 
were used to connect a set of hardkeys embedded into 
the screen bezel, forming a close approximation of the 
final screen bezel layout (see Fig. 2). 

Hifsim has two main sections: the screen generator and 
the simulation section. The screen generator is basically a 

Fig. Com The Hifsim simulator hardware interface resembles the Com 
ponent Monitoring System's. 
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compiler that interprets the Hifsim screen definition lan 
guage and converts it into commands for the HP Starbase 
graphics software. This language is adapted to the charac 
teristics of the planned Component Monitoring System 
display hardware in terms of resolution, character sizes, 
fonts, colors, and special graphic elements. 

The benefits of the screen generator are: 
â€¢ Serves as a screen design tool 
â€¢ Ensures consistency in screen design 
â€¢ Enabled early selection of the Component Monitoring 

System color scheme 
â€¢ Generates "screen cookbook" 
â€¢ Supports usability tests 
â€¢ Aids in software implementation 
â€¢ Supports trade shows, demonstrations, and training. 

Both sections of Hifsim are data driven. This means that 
the screen and operating dependencies are described in 
flies. Every change in the screen content or operating 
sequence is implemented by editing these files while Hif 
sim is running. This supports the idea of interactive 
screen design and makes Hifsim a true screen design 
tool. 

The monochrome version supports two intensities of 
green. Up to eight colors can be used in the color version 
of Hifsim. Each color can appear with full or half intensi 
ty. Again, similarity to the final display hardware attri 
butes was mandatory for the simulator, and the color 
map of the workstation made it possible to generate any 
desired color. This allowed us to come up with a good 
definition of the Component Monitoring System color 
scheme under the restriction of the available hardware 
very early in the human interface design process. 

Building a screen means specifying the screen objects 
along with their attributes in terms of color, size, posi 
tion, line style, and so on. The ability to define waveform 
objects in terms of wave amplitude, trace length, position, 
and color was essential for the proper design of the real 
time waveform display. The screen definition language 
supports primitives for text, waveforms, rectangles, size 
bars, value and alarm bars, lines, and polygons. 

Hifsim made it possible for the human interface design 
team to visualize and distribute the screen design in the 
"screen cookbook", which is a collection of about 200 
screen hardcopies bundled together to illustrate the Com 
ponent Monitoring System human interface design. The 
cookbook was an essential element in the human inter 
face design process. It was used to get clinical user and 
HP management feedback and approval very early in the 
design process. 

The effort spent in building Hifsim was repaid during the 
implementation of the human interface software. All 
screen definition details were used in the actual software 
implementation with virtually no changes. The implemen 
tation of the interface's task window command language 
resembles the primitives used in the Hifsim screen defini 
tion language. 

The basic functionality of the Component Monitoring Sys 
tem was developed jointly with the HP Waltham Division 
in the U.S.A., and Hifsim was used there as well for 
screen designs and simulation in parallel with the R&D 

effort at the BÃ²blingen Medical Division. This helped 
achieve inherent consistency. Because the same tool was 
used to generate all of the Component Monitoring System 
screens, the screens' look and feel are consistent across 
all Component Monitoring System functions. 

Hifsim was used widely in exposing the human interface 
design during shows, demonstration sessions, and market 
ing training at a time when no finalized Component Moni 
toring System hardware or software was available. This 
allowed the design team to get very early feedback on its 
user interface design. 

Usability Testing 
Hifsim was a prerequisite for being able to set up the 
Component Monitoring System usability tests. The pur 
pose of the usability tests was to discover which features 
of the human interface design were effective and which 
needed to be improved, and to do this testing early in the 
design process where changes could still be made in the 
human interface design. 

An extensive usability test session was organized in the 
Boston area by an independent research institute that 
specializes in human interface studies and human factors 
research. Our objective was to conduct an independent 
evaluation of the monitor's user interface, basically the 
control structure and the screen layout. The test was con 
ducted on a sample of 13 nurses and anesthesiologists 
who were asked to perform typical patient monitoring 
tasks. A second objective was to assess the value of us 
ability tests as an aid to the design process of a monitor's 
user interface. 

A game plan was worked out that included a list of 30 
different scenarios commonly performed by the clinical 
personnel in operating rooms and the ICLIs. The test ses 
sions were conducted by a moderator who first read the 
task scenario and then asked the test subjects to perform 
it. All sessions were videotaped and members of the 
Component Monitoring System R&D and marketing teams 
watched them in a separate room. This way the design 
engineers got firsthand insights into user reactions to the 
human interface. 

Before each session the moderator gave a very brief ex 
planation about how the monitor works. This demonstra 
tion was kept to a minimum to test how easy it would be 
for a nurse to operate the monitor with almost no pre 
vious training. The test subjects were asked before the 
test what functionality they expected to activate with 
each hardkey. In this way we got more feedback on how 
intuitive the Component Monitoring System keypad label 
ing was. 

At the end of each session the test subjects were asked 
to pretend that they had to train the moderator to do a 
simple procedure, such as changing the leads on the ECG 
or adjusting the pressure alarm limits. The purpose was 
to see if they could recall the procedure they had per 
formed about an hour ago. This was a measure of how 
well they had learned and how well they understood the 
operating concept. 

The general assessment was that the Component Monitor 
ing System user interface is sound, easy to learn, and 
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effective to use. A significant number of recommendations 
and problems were found, many of which had not been 
reported in previous tests with clinical specialists and HP 
employees. For example, the monitor has a function that 
allows the user to activate or suspend the monitor's 
alarming capability. This function was implemented in the 
prototype as a toggle key. To suspend alarms, the user 
had to press a softkey labeled Suspend Alarms. The label 
then changed to Activate Alarms and an ALARMS SUSPENDED 
message appeared in the upper part of the screen. The 
subjects frequently overlooked the message. They were 
therefore confused to see the softkey label changing to 
Activate Alarms. They were not sure whether the alarms 
were on or off. Even with extensive explanations, they 
had trouble understanding the functionality of the toggle 
softkey. Because this is a critical function that involves 
patient safety, we separated this function into two sepa 
rate softkeys. 

The recommendations from the usability tests were incor 
porated in the human interface design and new tests were 
conducted. After these were successfully passed, the hu 
man interface ERS (external reference specification) was 
finalized. 

The usability tests were an essential milestone in the hu 
man interface design process. However, the tests only 
evaluated the system's ease of learning and initial ease of 
use. They did not evaluate how users would feel about 
the monitor after they had used it on a daily basis. The 
basic difference is that users who know the monitor don't 
read labels anymore. They simply push keys in a "pre- 
stored" sequence. This emphasizes the importance of con 
sistency in the Component Monitoring System human in 
terface design. In addition, these tests did not reflect how 
the user would interact with the monitor in a clinical 
environment, in critical situations where fast access to 
some basic functions is essential. Let's come back to the 
example of the suspend/activate alarm function, finally 
implemented with two softkeys. After release of the Com 
ponent Monitoring System, we found that users in the 
operating room require a one-push key to suspend or acti 
vate the monitor's alarms. This is the way they are used 
to operating other monitoring equipment. In addition, hav 
ing direct access to the alarm suspend function helps the 
user whenever special procedures are done on the patient 
that require alarm suspension. This led to the decision to 
add a hardkey on the keypad for the suspend/activate 
alarm function. 

The verification process did not stop here. Tests in the 
clinical environment were conducted in the U.S.A. and 
various European countries before release of the Compo 
nent Monitoring System to assess its usability and to test 
specific monitor functionality. With each Component Mon 
itoring System release, further fine tuning of ease-of-use 
aspects has been done, but the main operating concepts 
have proved sound. 

Designing for Ease of Use 
To ensure intuitiveness and ease of use, a number of de 
sign decisions were made for the human interface of the 
Component Monitoring System. These are discussed in 
the following paragraphs. 

Intuitive and Explicit Labeling. The human interface always 
uses verb+noun combinations as softkey labels (Change 
Lead, or Alarms, Select Parameter). It always uses nouns or 
objects for functional entries on the keypad (Parameters, 
Patient Data, Monitoring Procedures). 

In the past each front-panel control had one function, 
which needed a label for explanation. To keep the prod 
uct's appearance unconfusing, it was necessary to abbre 
viate labels. This made them hard to interpret and to lo 
calize. The function of a key is much clearer if both a 
verb and a noun are part of the label. Then the control 
clearly does "something to something". 

All function keys act only as softkeys â€” they don't have an 
additional meaning as a hardkey. There is always only 
one function assigned to a given control. There are no 
hidden functions and no automatic screen actions, which 
are perceived as unexpected, are not obvious to the user, 
and require extra training effort. 

Task Window Appearance. All task windows or setup 
menus have the same layout and appear in the same posi 
tion on the monitor's screen. All information needed to 
perform a given task is included in this window. The win 
dow height is a function of the amount of information 
that has to be presented. However, the basic design goal 
was to keep these windows as small as possible to mini 
mize the amount of screen they cover. 

Screen Eye Movement. The most critical information, such 
as patient, alarms, is placed on the top right side of the 
screen. Because the vital sign numerics are critical for 
the patient status assessment, they always appear on the 
right side of the screen. Prompts and status messages are 
always shown in the top middle portion of the screen. 

Context Sensitive Help. The Component Monitoring System 
help function is intended to replace the traditional in 
struction card. Upon request (pressing the Help hardkey) 
the system provides one or two lines of information 
about the functionality of the currently activated softkey 
or choice. In the case of multistep procedures a more 
detailed description of the procedure steps is shown as 
permanent help inside the operating window. None of the 
help components hides the currently active task window. 

Consistency. This issue is critical for the ease of use of 
the monitor. The same functions are kept on equivalent 
keys across different operating windows (e.g., the Adjust 
Alarms function is always the rightmost softkey in any 
parameter task window). The same wording is used for a 
function that appears in several windows (e.g., Change 
Scale is used as a softkey label whenever a change in a 
parameter's amplitude is implemented). All softkey labels 
are printed with an initial uppercase character followed 
by lowercase letters. Highlighting is always used to indi 
cate that a given field is currently active. Blinking is al 
ways used to indicate that an alarm condition is present. 
Operating the monitor from the screen bezel or the re 
mote keypad is the same. All bezel keys appear in the 
same layout on the remote keypad. Rules and guidelines 
ensure that application software modules present task 
windows in a consistent way. This applies not only to the 
run-time task windows but also to all parameter configu- 
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ration windows. All have similar appearances and identi 
cal controls. 

Color. Color is additional and redundant and never used 
as the only coding scheme. Color is used basically to dif 
ferentiate real-time waveforms displayed in an overlapping 
fashion. Reces of information that belong to one parame 
ter source (such as the real-time waveform, numerics, and 
the trend wave) always have the same color. All operating 
windows have the same color (cyan) and all softkey la 
bels are white on cyan. Alarm severity is expressed in the 
colors of the alert messages. Life-threatening alarms are 
in red, caution or warning alarms are in yellow, and inop 
erative conditions are shown as green messages. A red 
X-bell symbol is used throughout the system to indicate 
that alarms are turned off. 

Avoiding Operating Errors. All choices for a given function 
are always shown. There are no hidden choices. The sta 
tus of a given setting is shown before a change is initi 
ated. Prompt messages and prompt sounds are used to 
inform the user if an action cannot be executed properly. 
Actions like pressing Confirm or finishing multistep proce 
dures (e.g., zeroing a pressure line) always result in a 
prompt message and sound. 

Graphics. In addition to digital readouts, graphic elements 
are widely used. This includes size bars for amplitude 
adjustments and audible volume control and alarm and 
value bars to indicate the current range of alarm limits. 

User Defaults and Configuration Sets. The basic design goal 
is that it be possible to turn on the monitor, attach the 
transducers and electrodes to the patient, and start moni 
toring without any further settings or adjustments. This 
means that the monitor will initiate at power-on with a 
set of user-definable settings. These user defaults can be 
specified at installation time and changed whenever re 
quired. They are stored in nonvolatile memory and read 
after monitor restart. This applies to every parameter 
module in the Component Monitoring System. 

In addition, a whole set of user settings related to one 
specific Component Monitoring System element, such as 
the display or the recorder configuration, can be bundled 
together and accessed by a single keypush. For example, 
all screen related attributes, such as waveform assign- 
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ment to display channels, number of waveforms, speed of 
waveforms, and overlapping formats, can be put together 
as one screen choice. Up to three different screen 
choices can be stored in nonvolatile memory. This sup 
ports applications in the operating room, where depend 
ing on the course of surgery, specific screen layouts have 
to be accessible without complex interaction. 

Finally, the concept of a configuration set supports the 
monitor's ease of use and flexibility by customizing the 
parameter algorithm behavior and the parameter settings 
according to the specific environment (operating room or 
ICLT) or to the patient's age (adult, pediatric, or neonate). 
The user can specify or change the monitor's behavior 
simply by selecting one of the four available configuration 
sets prestored in the monitor. This again simplifies the 
monitor's setup in an environment like the operating 
room, where patients of different ages undergo surgical 
interventions. 

The Resting Display 
The resting display is what the Component Monitoring 
System shows when no user interaction is taking place. 
Fig. 3 shows a typical resting display. 

Since the monitor's main task is to measure a patient's 
vital signs and give an alarm if a critical situation occurs, 
the top line is reserved for alarm information. It also con 
tains the patient's name, the current date and time, and 
the basic configuration of the monitor â€” for example, a 
classification of the patient and the application area for 
which the internal algorithms are optimized. 

The next line contains status and prompt messages in 
forming the user about events that are not as critical as 
alarms, but give information about such things as suc 
cessfully finished recordings or parameter calibration pro 
cedures. 

Depending on the Component Monitoring System configu 
ration and the user's choice, the resting display shows 
four, six, or eight real-time waveforms of the measured 
parameters with the digital values derived from the wave 
forms displayed next to them. For better vertical wave- 

Parameter Module 
Setup Key Pressed 

rm a Task 

Function Key 

Fig. 3. Typical resting display. Fig. 4. General operating structure. 
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Fig. 5. The keypad. 

form resolution, up to two groups of waves can share a 
larger sector on the screen. This overlapping of wave 
forms allows the user to correlate different waveforms on 
the time axis. 

Each waveform channel can be assigned a different 
speed. Two presentation modes of the waveforms are 
possible: either the waveforms are fixed on the screen 
and old waveform samples are erased by the newest, or 
the waveforms move across the screen with the newest 
samples always next to the digital values. 

The content of each channel can be configured. Addition 
ally, the user has the choice of three preconfigured 
screens to make it possible to adapt quickly to changes 
of the patient's condition. 

Digital .Values 
The user has definite expectations about where, when, 
and in what format digital values should appear. The re 
quirements for the arrangement of the digital values were: 

â€¢ The values of a parameter plugged into a rack or turned 
on should show up automatically. It is unacceptable to 
have to position the value of such a parameter manually. 
It must appear in the right position. 

â€¢ The digital values must be placed next to their corre 
sponding waveform if possible. 

â€¢ As many values as possible have to be shown with large 
digits. On a full display it is acceptable for the less-impor 
tant values to be shown with small digits, but not on a 
display with just two measured parameters. 

These requirements are met by an elaborate algorithm. It 
is an iterative process that tries to find a place for all 
digital values available in the system. It first places all 
values next to their waveforms with large digits. It then 
places all other values, according to a priority list, in the 
right column next to the waveform values. Temperature 
values are first assigned large digits. 

If there are still unassigned numerics left but no more 
space available, the algorithm starts decreasing values in 
size, starting with those of lowest priority, and repeats 
the process. As a last resort, temperature values are al 
lowed to share the same place, alternating at two-second 
intervals. 

Operating Concept 
The general operating structure of the Component Moni 
toring System human interface is described by the state 
diagram shown in Fig. 4. 

Keypad. After the keys on the parameter modules, which 
are mainly used to enter the menus and adjust parameter 
settings, the keypad underneath the screen is the main 
tool for users to interact with the monitor. Fig. 5 shows 
this keypad. As mentioned above, a handheld keypad for 
remote operation has some additional functions available. 

The first row of keys on the keypad consists of seven 
function keys. Their functions are defined by the menus 
that appear on the screen. 

The next row of keys is used to enter six different cate 
gories of monitor interaction. 

The lowest row contains keys that immediately start ac 
tions that are frequently used in the hospital's daily rou 
tine. The Standard Display key always returns control to the 
resting display. 

The Silence/Reset key is used to silence or reset alarms. 
The Suspend key is used to suspend or activate instrument 
alarm capability. There are alarm-indicating LEDs on the 
left and a diamond of four cursor keys and a Confirm key 
on the far right. The last group of keys gets highlighted if 
they can be used. 

The Array of Choices. If one of the keys in the middle row 
is pressed, the user immediately gets a display of all of 
the interactions that belong to the category described on 
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Fig. 6. The Parameters array of choices. 
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the entry key (see Fig. 6). There are no hidden functions 
that the user might remember but does not know where 
to look for. 

Behind some of the entry keys there can be more than 
seven functions. Thus the user is shown an array of 
choices with up to four possible lines of softkeys. The 
number of entries depends on the category and the con 
figuration of the Component Monitoring System. The ac 
tive une is shown in full intensity. It can be moved up 
and down either by repeatedly pressing the entry key or 
with the cursor keys. 

The array of choices illustrates three important mecha 
nisms that occur consistently throughout the operating 
concept. 
Resources, such as the place occupied by the array of 
choices, are used according to the system configuration. 
Selected items are shown in full intensity 
Two methods are consistently allowed for selecting an 
item: either by repeatedly pressing the key that was used 
to enter the context, or by using the cursor keys. Usabil 
ity testing has shown that there are personal preferences 
for either method depending on the user's background. As 
a third method, touch would not clash with the operating 
structures, although it is not offered at this time. Inverse 
areas in half intensity could be activated by touch. 

S t a t u s  A r e a  

I n t e r a c t i v e  A r e a  

Help / prompt strings 

Fig. 7. The generic layout of a task window. 

Task Windows. The array of choices is an intermediate 
step in entering the next operating level, the task window. 
Fig. 7 shows the generic layout of a task window. The 
possible functions are labeled with inverse softkeys, 
which do not change in this context. The currently active 
function is highlighted and linked to the interactive area 
above, which can contain items to be selected or special 
contents needed for this specific softkey. 

Fig. 8. Overview of the C.ompon- 
MÃ­iiiiliiriiijÃ­ S\::lr]ii operating 

levels. 
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Message Passing 
Bus 

Standard Parameter 
Interface Broadcast 

Standard Parameter 
Interface Broadcast 

Display 
Controller Fig. 9. Layered model of the hu 

man interface software. 

The status area underneath the title contains all status 
information about the current task â€” including a real-time 
waveform if available â€” to make sure that the user does 
not have to select a function just to get more informa 
tion. The user only needs to press a softkey if something 
is to be changed. 

If required, the rightmost softkey can be used to jump 
back and forth to a subsequent task window. As an exam 
ple, Fig. 8 shows an overview of the operating levels for 
three parameter setups. 

Human Interface Software Archi tecture 
The human interface software is embedded in the overall 
Component Monitoring System software architecture. It is 
one of the large data sinks that make intensive use of the 
communication model with its message passing concept. 
The well-structured information provided, for example, by 
the standard parameter interface (see article, page 19) 
makes it possible to add new parameters with virtually no 
changes to the human interface software. It also allows 
resources to be used very effectively by allocating 
memory depending on the number of messages to be pro 
cessed. 

Fig. 9 shows the layered structure of the human interface 
software module. Each parameter module, even a new 
one, broadcasts its standard parameter interface messages 
and is automatically recognized by the screen configura 
tion software. To get a task window, any application soft 
ware module either applies directly to the task window 
arbiter or specifies an entry in the array of choices. If 
selected, the array of choices manager arranges a dynam 
ic link between the parameter module and the task win 
dow arbiter. 

Any application software module can present information 
in a task window by using a command language that sup 

ports the specific elements of the human interface. This 
is an effective way to achieve the required consistency 
across all task windows. The content of the task windows 
is determined by the application, but human interface 
related definitions are coded in the command language. 
Thus, most changes affecting the human interface design 
have to be done in the human interface software only. 

A powerful standardized keyhandler builds the interface 
between the application software and the task window 
command language. The command language hides the 
pixel coordinates of the display controller from the appli 
cation software. Thus, the application software does not 
have to be changed in case the display technology 
changes, for example to LCD. The coordinate system of 
the task window command language is the same as was 
used during the human interface screen simulation. 

There are asynchronous FIFO buffers in the path between 
the task window commands and the connected hardware 
devices, mainly the display controller. A special hand 
shake mechanism based on the monitoring of token mes 
sages guarantees that the FIFOs cannot be flooded in 
peak situations. 

By setting up the human interface module two or more 
times in the monitor configuration table (see article, page 
13) and plugging more display controller cards into the 
computer module, several independent displays can be 
connected to one Component Monitoring System. 
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Globalization Tools and Processes in 
the HP Component Monitoring System 
Software design and localization are decoupled. All languages are treated 
in the same way. A database contains the text strings for all languages, 
and automated tools aid the translator. 

by Gerhard Tlvig 

The HP Component Monitoring System is an international 
product designed for a worldwide market. Among the 
requirements for the product were introduction of local 
ized versions simultaneously with the shipment of the 
standard product, full Asian language support, and low 
incremental effort for localization in any new language. 

At first release, the product was localized in the following 
languages: English, German, French, Dutch, Swedish, Ital 
ian, and Spanish. A Kanji/Kana prototype version was 
available as well. The current release is also localized in 
Danish, traditional Chinese, and simplified Chinese. 

Localization Goals 
To fulfill the requirements, a number of goals were set 
forth very clearly in the design phase of the Component 
Monitoring System software. The major goals were the 
decentralization of localization efforts, the automation of 
the localization process, and the standardization of inter 
faces. 

Decentralization. Decoupling the software design and im 
plementation process (R&D responsibility) from the local 
ization process (technical marketing responsibility) makes 
it possible to produce a localized Component Monitoring 
System without interrupting the software engineers work 
ing on their software modules. The coordination and tim 
ing of the translations are not directly coupled with the 
software development process. 

Automation. Automated processes to generate localized 
Component Monitoring System software allow efficient 
generation of localized versions whenever they are need 
ed, especially in prerelease phases (regulatory approval, 
clinical trials, demonstrations, etc.). The automated pro 
cesses transform all Component Monitoring System text 
strings from plain English to the equivalent hexadecimal 
character representation. Automatic format checking is 
part of this process. Translation of all text strings of a 
Component Monitoring System software release in a 
single pass improves the consistency of the translated 
text â€” similar terms are translated the same way in vari 
ous places. The same translator is responsible for text 
strings and for the Operating Guide translation. 

Standardization. A well-structured native language support 
(NLS) database is needed. The generation process for 
localized software and the translation process are the 

clients of this database. The NLS database is part of the 
Component Monitoring System software maintenance sys 
tem. 

Simple and standardized interfaces between the compo 
nents of the localization process are necessary. This in 
cludes common file formats for the NLS database, com 
mon tools for accessing and handling text strings, and 
common tools and processes to translate and generate 
localized software. 

Design Decisions 
Specific design decisions had to be made to achieve these 
goals. Among these are: 

â€¢ The HP standard RomanS character set is supported. This 
allows localization of up to 14 Western European lan 
guages with one RomanS character generator, which is 
located on the display controller function card. This con 
siderably simplifies the handling of European language 
options. 

' All character codes are two-byte codes. Thus all text 
strings use two-byte character codes. This allows support 
of Asian languages as well as all European languages in a 
consistent way. For RomanS characters, the upper (un 
used) byte is cleared. 

' A given text string has a fixed field length across all lan 
guages. Thus the field length of a given text string is not 
language dependent and the access of a software module 
to its text strings is language independent. In addition, all 
text strings are terminated with an end-of-string charac- 

############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 
############### 

Normal  Character  Cel l  =  16 x  20 
As ian  Font  Ce l l  =  16  x  16  
Asian Character  Body = 15 x 16 ( r ight  just i f ied)  

Fig. 1. Component Monitoring System standard character cell. 
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ter. There is no language dependency in the way strings 
are handled in different languages. 

â€¢ Text strings are separated from module code. All soft 
ware modules are language independent. Inside each soft 
ware module, all text strings are located in TEXT directo 
ries, thus being separated from the code (PROG) directory. 
Changing text strings from one language to another does 
not affect the Component Monitoring System code. No 
recompilation of the software is necessary when a new 
localized Component Monitoring System version is pro 
duced. 

â€¢ Standard HP16 codes for all Asian languages are sup 
ported. This allows the Component Monitoring System to 
handle all Asian languages identically and supports the 
connection of Asian printers as well. For each Asian lan 
guage, a specific Asian EPROM card with the complete 
font set is supported. 

> The standard character cell supports all Asian language 
fonts. The standard character cell is 16 pixels wide by 20 
pixels high. The Asian fonts (Kanji/Kana, Chinese) are 
handled as right-justified 15-by-16-pixel characters (see 
Fig. 1). 

A pixel is 0.219 mm wide by 0.352 mm high, giving an 
aspect ratio of 1.6. An Asian character should have a 
square appearance, so the display controller firmware 
doubles each pixel in the x dimension. This means that a 
Kanji character takes twice as much space in a horizontal 
string as a RomanS character. Since each Kanji character 
occupies two normal character cells, all Asian strings are 
limited to half the length of RomanS character strings. 
The Asian translation tool takes this restriction into con 
sideration. Fig. 2 shows the traditional Chinese translation 
of a typical Component Monitoring System task window. 

The NLS Database 
The NLS database contains all strings that are visible to 
the Component Monitoring System user. They show up 
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Fig. 3. NLS database structure. 

mainly on the screen, but may also be present on the 
keypad and the patient parameter module panels. 

The database is organized under the HP-UX file system as 
hierarchical file directories (see Fig. 3).The database is an 
integral part of the Component Monitoring System docu 
mentation and is maintained with the HP-UX res utility. 

Below the main entry, a distinct entry called a LANG(uage) 
tree is provided for each language. There is a basic direc 
tory where all localizable strings are stored in plain En 
glish. This is the RAW directory. Its structure is identical 
to all of the LANG trees but it is not known to the transla 
tion tool and to the text compiler. Whenever text strings 
are added, deleted, or changed, this directory must be 
updated. 

The LANG trees are organized as a collection of valid NLS 
revisions, such as ENG/ENG6.1 or GER/GER6.2. The English 
revision is the starting point for all further translation 
activities. All LANG trees have an identical structure and 
are composed of a collection of NLS entries such as EGG, 
PRESS, and so on. Each software module has one NLS 
entry in the database. Keeping all text strings of one soft 
ware module together eases and improves the translation 
of the text strings of that module. 

Each NLS database entry contains a set of NLS files that 
incorporate the text strings. A standard file format is es 
tablished for all NLS files (see Fig. 4a). It is processed by 
the NLS tools and recognized by the translation tool. NLS 
files contain title, header, context, and text sections. The 
title section contains the pathname, language, and revi 
sion of the NLS file. The header section is a list of format 
specifications, such as .sz for string size or .ic for initial 
caps, which are read by the hexpander tool (see below). 
In the context section, advisory information is given to 
the translator to make translation of that NLS file easier. 
It is read only by the translation tool. The text section is 
the body of the NLS file. It contains a sequence of items, 
each item identified by a text code and a text string. 

Fig. 2. Traditional Chinese translation of the pressure calibration 
task window. 
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NLS Tools 
The hexpander and the syntax checker are used to gener 
ate and check the hexadecimal character strings in the 
ENG directory. The text compiler interfaces the NLS data 
base to the C source code. Fig. 5 shows how the NLS 
tools interact with the NLS database. 

The hexpander takes the plain English text from the RAW 
directory and generates the hexadecimal character strings 
in the ENG directory according to the format specifications 
(see Fig. 4b). A utility called make_hexpand automates the 
process of generating and checking the syntax of the hex- 
panded ENG strings. 

The syntax checker reads the hexpanded flies and flags 
syntactically incorrect strings (e.g.v too long). A similar 
checker is incorporated into the translation tool to check 
the hexpanded ENG NLS file before translation takes 
place. 

The text compiler links the C source code with the NLS 
database, which contains text strings collected in files. 
References to these files include the language, the module 
entry (such as ECG or HEART), and the specific file contain 
ing a given class of text strings (such as SK_LABEL or 
ALERT). Fig. 4 shows an example of the ECG/SK_LABEL text 
file. 

In the TEXT directory, the programmer specifies a source 
file (of class .txt) which contains the references to the 
NLS files, such as IECG/SKJ.ABEL 2.1. The .txt file is identical 
to the .c file except that it has the NLS file references, 
(preceded by the escape character !), which must be 
resolved before the file can be compiled (using make). The 

Hexpanded 
English Text 

English Text. 
Context Information. 

Format 
Specifications 

Title 

Header 

Context 

â € ¢ C M S  T E X T  F I L E  ~ E C G , S K _ L A B E L  
Language: ENG 
SRevision: 8.5 S 
SSource: users cms nls RAW ECG RCS SK_LABEL,v$ 

'Format Specs: 
.Â¡c 
ce 

.sz8 

'initial caps 
'centered within each of the two lines 
'string length (NORMAL characters) 

Text 

(a) 

This ECG contains the softkey labels for all softkeys in the ECG 
task of In the task windows the softkey labels consist of 'verb + noun' 
becausethey relate directly to an action. All softkey labels exceptthose containing 
parameter labels (e.g., PRESS) are written with initial capitals. 

'Softkey 6 Page 0 
2.1 -Adjust" 
2.2 "Alarms" 

[ Enter the alarm page of the ECG HR parameter ] 

' Softkey 6 Page 0 
2.1 "Adjust" 
0020 0041 0064 006A 0075 0073 0074 0020 | 

2.2 "Alarms" 
; 0020 0041 006C 0061 0072 006D 0073 0020 ! 

[ Enter the alarm page of the ECG'HR parameter 

[b] 

Language 
Independent 

Text Specification 

Fig. 4. (a) Example of an NLS file from the RAW din â€¢dory, (b) Text 
section of the hexpanded filo in Ihe ENG directory. 

!ECG SK_LÂ»BEL 2.1 
!ECG SK_LÂ»BEL 2.2 

Programmer s Deliverable 
tit files 

Fig. 5. NLS tools. 

text compiler resolves these references. It reads the hex 
panded NLS file (Fig. 4b), extracts the hexadecimal equiv 
alents of the referenced text strings, and replaces the 
NLS file references in the .txt file with these strings. The 
output is the C source file (of class .c). 

Thus, the text compiler is simply a preprocessor that 
takes care of the text strings. The programmer of the 
software module does not have to know what hexadeci 
mal strings are ultimately loaded into the .c file. This is 
language dependent and does not affect the .c code. 

To automate this process, the makejang utility was estab 
lished. This utility is a script that executes the text com 
piler for every software module that contains references 
to localizable text strings. The text compiler resolves 
these references by inserting in the indicated places in 
the .txt files the hexadecimal equivalents of the text 
strings. The output .c file is then compiled by the make 
utility in the usual way. An example of calling the 
makejang utility is: 

m a k e j a n g  " N L S R E V = 7 . 2 "  " L A N G = E N G "  

Localization Process 
The process established to implement the localization 
activities is shown in Fig. 6. 

R&D is responsible for the generation and maintenance of 
the NLS database and the RAW and ENG language trees. 
The checked-in ENG revision is the starting point for all 
translations. This ENG tree is provided to the technical 
marketing group together with a delta list containing all 
changes from the previous ENG revision. This group is 
responsible for driving and coordinating the translation 
process. When this process is complete, the translated 
LANG tree is loaded back into the NLS database. Auto 
mated utilities such as make_cms are used in R&D to gen 
erate the localized Component Monitoring System soft 
ware. R&D is responsible for providing the EPROM cards 
with the localized software. A quality assurance cycle 
similar to that for the ENG version is then started for each 
localized version. Part of the QA process is a consistency 
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Technical Marketing 

Checked-in 
ENG Revision 

Local Translation 
Offices 

Localized Software 
Quality 

Assurance 

Fig. 6. The localization process. 

and wording check of the localized software. The lan 
guage verification is scheduled and coordinated by techni 
cal marketing. The same translator who did the Compo 
nent Monitoring System translations is assigned to 
language verification of the Component Monitoring Sys 
tem product. 

Translation Tool 
The localization goals could not have been achieved with 
out a powerful and versatile translation tool. Because 
nothing was available off the shelf, we had to write our 
own. The tool is personal-computer-based, thus allowing 
translations of the Component Monitoring System text 
strings in each local HP office. The tool supports 16-bit 
character codes. It handles the standard RomanS charac 

ter set and allows printing of the translated strings on a 
HP LaserJet printer. 

The tool is designed to facilitate translations of large 
quantities of text. The tool reads the English source files 
and presents the translator with the destination fields for 
the translated strings, which are then written to the re 
spective LANG tree. 

Translation is possible for a complete LANG entry, for spe 
cific NLS entries (e.g., all strings of the ECG software 
module), or for specific text files inside one NLS entry. 
Printouts can be made from each of these translation 
levels. The user interface is softkey driven. 

Presently, this tool is used throughout the HP Medical 
Products Group and is supported by the CAD/productivity 
group at the BÃ²blingen Medical Division. It allows effi 
cient translations with a clear, standard interface to the 
NLS database and the Component Monitoring System soft 
ware development group. Its major benefit and achieve 
ment is the separation of translation activities from the 
software development efforts. 
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The Physiological Calculation 
Application in the HP Component 
Monitoring System 
This values converts raw real-time data into derived values the 
clinician can use to assess the patient's hemodynamic, oxygenation, and 
ventilator/ condition. 

by Steven J. Weisner and Paul Johnson 

The HP Component Monitoring System bedside monitor 
provides the clinician with a variety of vital-sign parame 
ters such as heart rate and respiration rate. These raw 

values and the associated alarms are very important in 
monitoring the patient. However, the human body is not a 
collection of independent physiological systems. Rather, 
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all major body systems interact in a variety of ways, 
many of which can be calculated by combining the raw 
parameter values into meaningful indicators. 

Physiological calculations are used routinely by many 
hospitals as part of their normal assessment and rec 
ord-keeping process. Calculations provide a way of quick 
ly reducing a large number of variables into a single num 
ber that represents a comprehensive physiological 
function. For example, to measure the load applied to the 
left ventricular heart muscle during the period of the 
heartbeat when the blood is ejected from the heart into 
the rest of the body (ventricular ejection), a variable 
called systemic vascular resistance (SVR) can be calcu 
lated from measurements of the mean arterial blood pres 
sure (ABPm), central venous pressure (CVP), and cardiac 
output (CO).1 

Studies have shown that calculated values such as pulmo 
nary vascular resistance (PVR) and left and right cardiac 
work (LCW/RCW) are good predictors of major malfunc 
tions or mortality in intensive care patients.2 Other stu 
dies have validated the efficiency of using calculations 
such as stroke index (SI) and left and right ventricular 
stroke work (LVSW/RVSW) for preoperative assessment of 
unacceptable risks for major surgery.3 

The Typical Calculation 
Poiseuille's law describes the laminar, constant flow of 
Newtonian liquids through rigid cylindrical tubes. Accord 
ing to this law, the ratio of pressure drop to the rate of 
flow is a function of all of the forces that retard this flow 
(i.e., radius, length, and viscosity). Blood does behave as 
a Newtonian fluid in blood vessels that are greater than 
0.5 mm in diameter. Blood flow through these vessels is 
generally laminar, although the arterial tree exhibits more 
pulsatile behavior. Although blood vessel radii do vary 
slightly because of the applied pressure of the blood, Poi 
seuille's law can be used to calculate a first-order approx 
imation of resistance by applying Ohm's law for electrical 
circuits. 

Just as resistance in a circuit is equal to the voltage dif 
ference divided by the current flow, vascular resistance 
(R) can be approximated by dividing the pressure differ 
ence between the inlet of the vascular bed (PI) and the 
outlet of the bed (P2) by the blood flow (Q). 

R = (PI - P2)/Q. 

In medical terms, we measure the difference between the 
mean arterial (ABPm) and venous (CVP) pressures and 
divide by the cardiac output (CO). The resultant value is 
converted from units of mmHg/1 to units of dyne-s/cm5 by 
multiplying times 79.97. This value is called systemic vas 
cular resistance (SVR). 

SVR = 79.97(ABPm - CVP)/CO. 

With this value, the clinician can get a measure of the 
constriction of blood vessels (vasoconstriction) or expan 
sion of the blood vessels (vasodilation). Changes in SVR 
are related to other cardiac failures such as hypovolemic 
shock, left ventricular failure, cardiogenic shock, and hy- 
poxemia.4 

Other calculations used to assess the state of the cardio 
vascular system are shown in Fig. 1. 

The two pressure measurements ABP and CVP are ac 
quired through invasive pressure catheters attached to the 
patient and monitored through the Component Monitoring 
System parameter modules. The cardiac output parameter 
is obtained through a CO parameter module and mea 
sured using a monitoring procedure, which requires the 
clinician to interact with the Component Monitoring Sys 
tem. The acquisition of the output value (SVR in this 
case) and the presentation of the calculations to the clini 
cian are described in the following sections. 

Data Management Package 
The calculations package in the Component Monitoring 
System is a subset of a more general data management 
package. This package consists of seven Component Mon 
itoring System application software modules, as shown in 
Fig. 2. The data acquisition module acquires and averages 
raw parameter data (e.g., heart rate) over a one-minute 
period. This raw data is available as a broadcast message 
on the Component Monitoring System's internal message 
passing bus. The one-minute-average data is stored in a 
buffered RAM database. The database module provides 24 
hours of data storage for 16 continuously monitored pa- 

Body Surface Area: (Boyd's Formula) 

B S A  =  ( 3 . 2 0 7  x  W T  ( 0 . 7 2 8 5 -  0 . 0 1 8 8  x  l o g  H I T )  ,  HT03) 

Cardiac Index : 
Cl = CO BSA 

Stroke Volume : 
SV = CO x 1000 HR 

Stroke Index : 
SI = SV BSA 

Systemic Vascular Resistance : 
SVR = 79.96 x (ABPm - CVP)/CO 

Systemic Vascular Resistance Index: 
SVRI = SVR x BSA 

Pulmonary Vascular Resistance : 
PVR = 79.96 x (PAPm - PAWP)'CO 

Pulmonary Vascular Resistance Index : 
PVRI = PVR x BSA 

Left Cardiac Work : 
LCW = CO x ABPm x 0.0136 

Left Cardiac Work Index : 
LCWI = LCW BSA 

Left Ventricular Stroke Work : 
LVSW= SV x ABPm x 0.0136 

Left Ventricular Stroke Work Index : 
LVSWI = LVSW BSA 

Right Cardiac Work : 
RCW = CO x PAPm x 0.0136 

Right Cardiac Work Index : 
RCWI = RCW ' BSA 

Right Ventricular Stroke Work : 
RVSW = SV x PAPm x 0.0136 

Right Ventricular Stroke Work Index : 
RVSWI = RVSW BSA 

WT - Body Weight in g 
HT- Body Height in cm 
HR â€” Heart Rate in beats/min 
CO â€” Cardiac Output in l/min 
ABPm - Arterial Blood Pressure Mean in mmHg 
CVP - Central Venous Pressure in mmHg 
PAPm - Pulmonary Arterial Pressure Mean in mmHg 
PAWP - Pulmonary Arterial Wedge Pressure in mmHg 

Fig. 1. Hemodynamic calculations performed by the calculation 
evaluator module of the Component Monitoring System data man 
agement software package. 

10000 
Units : 

Units 

Units - 

Units = 

Units - 

Units : 

Units - 

Units -- 

Units : 

Units 

Units 

Units - 

Units - 

Units = 

Units - 

Units 

m' 

= l/min-m2 

= ml 

= ml/m2 

= dynes-sec/cm5 

= dynes-sec-m2 cm5 

= dynes-sec/cm5 

= dynes-sec-m2 cm5 

= kg-m 

= kg-m/m2 

= g-m 

= g-m m2 

= kg-m 

= kg-m m2 

= g-m 

= g-m m2 

October 1991 Hewlett-Packard Journal 41 

© Copr. 1949-1998 Hewlett-Packard Co.



Parameter Input 
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Calculations 
User 

Presentation 
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Data Request 

Calculation Request 

Calculation Output^ 

Database 
Controller 

Data Request 

Calculation 
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Tabular 
User 

Presentation 

Print Request 

Print Request 

Trends 
User 

Presentation 

Fig. 2. Data management data 
flow diagram. The data manage 
ment package consists of seven 
application software modules. 

rameters with one-minute resolution. Parameters that are 
measured intermittently or as part of a procedure, such 
as noninvasive blood pressure or cardiac output, are re 
ferred to as aperiodic parameters. The database module 
allows storage of 36 aperiodic parameters, each contain 
ing up to 96 measurement points. All retrieval of the data 
is mediated by request messages and return-data mes 
sages sent across the message passing bus. 

The acquired data can be presented in four forms. A tab 
ular data display (UPC_TABULAR) presents 13 rows of pa 
rameters in eight columns of time. A graphic trends dis 
play (UPCJTRENDS) shows up to nine parameters in graphic 
form on three separate axes. Calculations are done by 
two modules: the calculation evaluator (CALC), which per 
forms the calculations, and the presentation module 
(UPC_CALC), which provides the user interaction with he- 
modynamic, oxygenation, and ventilation calculations. The 
clinician can also review the calculated data as a function 
of time in a tabular format. 

Finally, there is a report package, which provides printed 
copies of any of the tabular, trends, or calculation dis 
plays. This report is preformatted and can be printed lo 
cally at the bedside or remotely on a central printer. 

Calculation Evaluator 
The calculation evaluator module (CALC) is a collection of 
services associated with physiological calculations. These 
services are invoked by means of messages sent to the 
CALC module. Typically, applications such as UPC_CALC in 
voke the functions of acquiring the appropriate reference 
time and input parameters for the calculation and then 
calculating the output values. 

In addition, the CALC module provides a separate service 
to calculate the body surface area (BSA), which is used 
as a common index for many physiological calculations, 
and is also used outside of the data management package 
by the cardiac output module. 

Calculation Presentation 
The clinician obtains the services of the calculation evalu 
ator through the user presentation module of the calcula 
tions software, UPC_CALC. UPC_CALC is a single Component 
Monitoring System application that provides access to 
both calculation entry and calculation review frames. 

The first step in performing physiological calculations is 
for the clinician to select a physiological calculations 
group from the set of predefined options: hemodynamics, 
oxygenation, and ventilation. This is accomplished by se 
lecting the appropriate entry key in the Patient Data array 
of choices. Once this is done, the Component Monitoring 
System human interface software establishes a link be 
tween UPC_CALC and the monitor display. The calculation 
entry frame is shown in Fig. 3. 

After the calculation group has been selected, the clini 
cian can then perform one or more of the following ac- 

I I  H R  
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n  a m j _ c _  L _ a  I  c u  I  a t  i  o  n s _  

CO 
HR 
HBP S 
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PHP M 

PRWP 

CVP 
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SVR 

Â¡PVR 

LCW 

LVSH 
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108. 1 g-m 

1 . 7 3  k g - M  
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160 DSm2/cm5 
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Calculation Time: 
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Fig. 3. Hemodynamics calculation entry frame after calculations 
have been performed. 
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Fig. 4. Hemodynamics calculation review frame. 

tions by using the labeled softkeys and a remote keypad 
for alphanumeric entry: 
Select a calculation time 
Enter or edit input parameters 
Calculate output parameter values 
Display alternate parameter attributes 
Print a report of the calculations. 

UPC_CALC uses the measurement time of the principal in 
put parameter as the reference time for all calculations. 
In the case of hemodynamic calculations, shown in Fig. 3, 
the cardiac output parameter drives all of the other calcu 
lations. Thus the time of the last CO measurement is 
used as a reference. All other input parameters used in 
the calculations are retrieved from the data management 
package database through a CALC module service, based 
on that reference time. The clinician can choose to over 
ride this time by using the Change Time key to select a dif 
ferent reference time. 

Not all input parameters used to perform calculations are 
automatically acquired by the Component Monitoring Sys 
tem. By using the remote alphanumeric keypad, the clini 
cian can enter a numeric value for any of the input pa 
rameters. The clinician can also override an automatically 
acquired parameter simply by entering a new value. All of 
these manually entered values are stored in the database 
and are used in subsequent calculations. 

Once all the necessary calculation time and input parame 
ter changes have been made, the clinician can request 

calculations of the output parameter values. UPC_CALC 
sends a request to calculate the output values to the CALC 
module, which performs the appropriate calculations. CALC 
then sends a return message back to UPC_CALC containing 
the list of output parameter values, labels, normal ranges, 
and measurement units. UPC_CALC uses this information to 
show the output values on the Component Monitoring 
System display. 

The clinician may wish to compare the output values to 
the expected normal physiological ranges for these val 
ues. When the ON/OFF Ranges softkey is pressed, UPC.CALC 
toggles between showing the output parameter units and 
the normal ranges. 

UPC_CALC also serves as the presentation layer software 
for the calculations review frame. The review frame pre 
sents the clinician with a tabular format of all previous 
calculations performed for this patient. As in the calcula 
tions entry frame, the clinician can compare values 
against normal ranges and obtain a printed report, as 
shown in Fig. 4. Typically, this report might be included 
with the patient record to aid the clinician in assessing 
the patient's past and current physiological states. 

Conclusion 
The Component Monitoring System data management cal 
culations package provides the clinician with a means of 
reducing the large volume of raw vital-signs data into a 
manageable set of variables. Measures of cardiovascular 
performance, blood oxygen content and delivery, and re 
spiratory gas exchange can be obtained through the he 
modynamic, oxygenation, and ventilation calculations. 
These calculations are vital to the clinical diagnosis and 
prognosis of the critically ill patient. 
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Mechanical Implementation of the HP 
Component Monitoring System 
The part count and the number of different parts are dramatically lower 
than purchased previous designs. Fewer than ten vendors are used for purchased 
mechanical parts. 

by Karl Daumiiller and Erwin FlachslÃ¡nder 

From the mechanical perspective, the HP Component 
Monitoring System offered several challenges. Among the 
most important were the definition of the architecture of 
the computer module and the design of the sheet-metal 
and plastic parts for this component. Other mechanical 
highlights include the implementation of the display front 
assembly and the construction of the parameter modules. 

Computer Module Chassis 
The general design objective for the computer module 
was to create a flexible, compact instrument that could 
easily be extended and upgraded. In accordance with the 
modular concept of the Component Monitoring System, 
the computer module had to be designed so that the 
function cards could be handled as independent modules. 
All function cards were to be accessible without having 
to remove or disassemble major parts of the enclosure. 

From the production point of view, the following general 
design objectives had to be met: 

â€¢ Minimum part count 
â€¢ Minimum number of parts with different stock numbers 
â€¢ Minimum vendor count 
â€¢ Use of preferred parts 

1 Compliance with all relevant medical safety standards 
1 Simple and automated assembly. 

We also committed ourselves to design an enclosure that 
could be assembled and serviced with only one tool (all 
you need is a screwdriver). 

The clinical environment mandates that the product be 
easily cleaned and have no sharp corners, sharp edges, or 
deep indentations. Liquid spilled over the Component 
Monitoring System is not allowed to create a hazardous 
situation for the patient or the user, nor may it leak into 
the unit. Last but not least, the constraints of the elec 
tronics had to be taken into consideration. 

The requirements were sometimes contradictory. For ex 
ample, on one hand, the chassis needs to have low RFI 
emissions, while on the other, it needs sufficient openings 
to dissipate as much heat as possible. The maximum in 
ternal temperature rise cannot exceed 15Â°C. Heat manage 
ment is made more difficult by the fact that fans are not 
acceptable in the monitoring environment. This implies 
that natural convection is the main mechanism for dissi 
pating heat. 

DC-to-DC 
Converter Assembly Central Plane 

Printed Circuit 
Board Guide Side Cover 

RFI Clip 

Blank Cover 

Top Cover 

Function 
Card Fig. 1. Exploded view of the com 

puter module of the HP Compo 
nent Monitoring System. 
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Extensive measurements with simulated electronic circuits 
and calculations in the early project phase were a good 
basis for the architectural design of the computer module. 
The knowledge gained from these studies and the demand 
for easy access to the function cards led to the present 
design. 

Product Design 
Two large sheet-metal parts form the enclosure of the 
computer module (see Fig. 1). The bottom part of the 
chassis is made of 1.25-mm-thick steel and has a large 
number of openings for ventilation. Mounting holes and 
pressed-in threads for the instrument's feet and locking 
cam are located here. The inner part of this U-shaped 
component has a number of indentations and cutouts. 
This construction allows the plastic guide for the function 
cards and the central plane to be snapped in place with 
out any screws. 

The second large sheet-metal part is the top cover of the 
chassis. Offset bends similar to those in the bottom part 
of the chassis make it possible to snap the plastic func 
tion card guide into the lid. Pressed-in threads are 
mounted on the offset flange to hold the function cards 
within the computer module. 

Two large indentations with strong steel strips riveted to 
the top cover provide a quick and easy way to mount the 
14-inch display on the computer module should this be 
desired. A combination of indentations with an undercut, 
feet with noses, and the cam forms a tight locking mech 
anism between the display and the computer module. 
This technique was first used by the HP Medical Products 
Group in 1981 for the HP 8040A cardiotocograph. This 
well-established mechanical interface for stacking instru 
ments or attaching them to wall or ceiling mounts or 
carts was a must requirement. 

After the U-shaped bottom cover and the lid of the chas 
sis have been assembled, all function cards can be in 
serted by simply sliding them into the enclosure. Metal 
board covers mounted on the rear ends of the function 
cards seal the remaining openings of the computer mod- 

Fig. 2. Inside the partially assembled computer module. 

Fig. 3. Bottom view of the computer module with unlatched internal 
rack and side and rear covers. 

ule. Each board cover contains openings for RFI clips 
and the function card's external connectors, and provides 
a mounting hole for fixing the function card to the frame. 
The remaining area is perforated for ventilation, except 
for the space needed to silk-screen the board name and 
number. Fig. 2 shows the interior of the computer module 
with the function cards inserted. 

As described earlier, the function cards are held in place 
by plastic guides in the top and bottom parts of the chas 
sis. The printed circuit board guide is an injection-molded 
part that can be used in both locations by simply turning 
it over. 

After the top cover is installed, the left and right side 
covers can be attached to the computer module. Again, a 
single injection-molded part fits both sides. This part con 
tains all the vents and openings needed for thermal man 
agement. The side covers also conceal the six screws that 
attach the chassis top to the bottom. The customer can 
easily remove the side covers for cleaning by unlatching 
the internal rack (see Fig. 3). 

For visual and cable management reasons, a rear cover 
was designed. This injection-molded part contains 
molded-on pivots and latching elements. Another injec 
tion-molded part with magnetic strips glued on fills the 
indentations on the top cover when the instrument is in 
stalled without a display on top (see Fig. 4). This com 
pletes the set of plastic parts for the computer module. 

The material used for all plastic parts except the chassis 
feet is BayblendÂ®, a polycarbonate/ABS blend. The chas 
sis feet consist of two components: a highly filled poly- 
amid for the body and a block copolymer for the inside 
element. The cam is molded from polyacetate. 

Display Front Assembly 
The Component Monitoring System can be equipped with 
a choice of displays. The basic models are 14-inch mono 
chrome and color displays. These displays consist of two 
major components: the bezel or front assembly, and the 
display consisting of the CRT, the deflection electronics, 
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Fig. module Assembled computer module with integral parameter module 
rack. 

Fig. 5. The display consists of the front assembly and the display 
itself. 

and the main power supply for the Component Monitoring 
System (see Fig. 5). The latter part is called the common 
unit. 

The common unit is a purchased part. To minimize the 
number of options the vendor has to build and supply, 
this part of the display contains no language-specific ele 
ments. All options, like local language, are restricted to 
the front assembly only. 

Objectives like design for manufacturability, clinical re 
quirements similar to those for the computer module de 
sign, and the limitations introduced by the electronic cir 
cuits played an important role in the development of the 
Component Monitoring System displays. 

The front assembly consists of a total of ten parts, which 
can be assembled simply by snapping the components in 
place. The main element is the plastic band (see Fig. 6). 
This part attaches to the common unit. It also serves as a 
pickup frame for the bezel, the human interface printed 
circuit board, a power knob, and a protection cover. 

The protection cover, made of thermoformed polycarbo 
nate, shields the human interface card from condensed 
water or cleaning fluids, which might drip from the CRT 
screen onto the printed circuit board. 

The bezel is attached to the band by snap-fit connectors 
and presses against the rim of the CRT. Since the mono- 

Protective Cover -i 

Band 

Ground Cable 

Printed Circuit 
Board 

Cover Connector 
Monochrome 
Bezel 

Thumbwheel 

Power Knob 

Membrane Keyboard 
Assembly 

- Color Bezel Fig. 6. Exploded view of the front 
assembly. 
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chrome and color displays do not have the same screen 
curvature, two bezels had to be designed. The bezel pro 
vides room for a membrane keyboard, which is the main 
control panel of the patient monitor. This keyboard is 
based on a double-sided printed circuit board. The con 
tact elements are metal domes of different sizes. They not 
only make contact when pressed, but also give a good 
tactile feedback. The domes are covered with an em 
bossed polycarbonate polyester overlay, which has been 
silk-screened from the rear to prevent abrasion of the 
nomenclature. Currently, the membrane keyboard is avail 
able in 11 different languages. 

Design Objectives for the Parameter Modules 
The parameter module mechanical design included the 
development of the plastic enclosure, the connectors, and 
the overlays and the mechanical part of the printed cir 
cuit board design. Currently two module types exist: 
single-width and double-width (Fig. 7). The prime objec 
tives for the design were that it be simple to insert mod 
ules and pull them out of the rack, that the modules be 
rugged, and that the housing be compact, measuring only 
100 mm by 100 mm by 36 mm. In addition to the general 
mechanical objectives listed at the beginning of this ar 
ticle, the parameter modules have to meet two special 
requirements. First, they must withstand a drop from a 
height of one meter onto a concrete floor. Second, for 
patient safety reasons, all connections to the patient are 
electrically floating with respect to ground. This isolation 
between floating and nonfloating parts is tested at 16 kV 
and is implemented as part of the electronic circuit in 
each parameter module. 

From the electronic standpoint, two of the approaches to 
meet these objectives were to use surface mount technol 
ogy for mounting the electronic components, and to apply 
new ways of assembling the printed circuit boards to 
achieve high packaging density. On the mechanical side, 
new ways had to be explored to build thin-walled injec 
tion-molded parts that could withstand the mechanical 
and thermal stresses and still be durable enough for their 
long hard life in the clinical environment. The entire me 
chanical design was done on the HP ME 10 system. Be 
fore making the final molding tools, a large number of 

modules were premolded using aluminium tools. The ad 
vantages were that tests could be conducted with 
close-to-final parts at an early stage in the project, and 
larger quantities could be built at a moderate cost for the 
extensive prototyping phase. 

Parameter Module Design 
The single-width parameter module consists of an assem 
bly of seven parts (Fig. 8). These include five molded 
plastic parts for the enclosure, one front overlay, and one 
printed circuit assembly. The double-width module has 
two additional parts for the housing, and in the case of 
the noninvasive blood pressure module, a complete pump 
assembly, which is built in (see article, page 25). 

The plastic housing of the parameter module is divided 
into an outer enclosure and an inner frame. This is neces 
sary to provide the 16-kV isolation between the floating 
and nonfloating grounds. Between the outer housing and 
the inner frame there is space for shielding material such 
as copper, mu-metal foil, or thin-walled steel sheet. So far, 
only the noninvasive blood pressure module has made 
use of this kind of shielding. 

The inner left and inner right frames are multipurpose 
parts for both module widths. The double-width module 
also has an additional middle part. 

To provide maximum volume within the modules, all plas 
tic parts have very thin walls. Nevertheless, they have to 
survive a one-meter drop. They also have to be resistant 
to cleaning agents and disinfecting solutions. We have 
found that Bayblend meets all these requirements. This 
compound includes both polycarbonate and ABS. Polycar 
bonate improves the ruggedness of the material while 
ABS has a positive effect on the chemical resistance. 

The printed circuit assembly within the module consists 
of three boards: a digital board including the power con 
verter, an analog board, and a board with LEDs and key- 
switches mounted on it. The three boards are intercon 
nected by flexible layers soldered onto the boards. For 
component loading, soldering, and test the three printed 
circuit boards are handled as one partially routed board 
with small bridges between the individual boards and an 
outer frame to hold all of the parts in place. Currently, 
we have nine parameter modules in production, which 
represent a total of three different routing contours. The 
overall size of the outer frame is identical for all parame 
ter modules, thereby contributing to our standardization 
effort by making it possible to use identical pickup 
frames for the different assembly stages. At the last stage 
of the production process the three printed circuit boards 
are broken apart, folded like a sandwich and inserted into 
the plastic enclosure. 

Additional mechanical parts that were designed for the 
parameter modules are the patient cable, the patient con 
nector, and the module-to-rack connector. The patient 
cable connector had to be compatible with HP's existing 
monitoring equipment. One disadvantage of the existing 
system is the limited number of mechanical keys avail 
able. For the Component Monitoring System we therefore 
redesigned the connectors and extended the number of 

Fig. 7. Single-width and double-width parameter modules. 
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possible keys so that each parameter has a dedicated 
configuration. 

Module Assembly 
Assembly time for a single module is one minute. No 
screws or fasteners are needed-all parts snap fit together. 
The normal assembly procedure includes the following 
steps: 
Fold the printed circuit boards together. 
Insert the printed circuit assembly into the left frame. 
Snap on the right frame (the inner module is now com 
plete). 
Slide the inner module into the rear part of the plastic 
parameter housing. 
Snap the front and rear housings together 
Add the snap lock to the module. 

The module is now ready and waiting for shipment. In 
the last production step, the proper language overlay is 
glued onto the front frame. 

Conclusions 
The mechanical design of the Component Monitoring Sys 
tem meets all of the design objectives. The E-score (a 

Fig. 8. Exploded view of a 
single-width parameter module. 

measure of ease of assembly) is a high 77 on a scale of 0 
to 100. Only one type of screw is needed for connections 
where good grounding or stability is required. Part num 
ber and part count are dramatically reduced compared to 
former designs, and the total vendor count for all me 
chanical parts is less than ten. 
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An Automated Test Environment for a 
Medical Patient Monitoring System 
The AUTOTEST program controls a keypusher and patient simulators to 
automate the testing of the software for the HP Component Monitoring 
System. 

by Dieter Goring 

The HP Component Monitoring System is a completely 
new patient monitor. It is based on a dedicated operating 
system and has an integrated data management system. It 
can process data from as many as 32 patient parameter 
modules and has an RS-232 interface for connecting a 
printer (see Fig. 1). 

Its alarm system has a very complex structure. There are 
three priorities: red, yellow, and green. There are alarm 
messages, sounds, and lights. Alarms can be turned on or 
off for all parameters or only selected ones. Alarms can 
be sent over the serial distribution network to central 
stations, arrhythmia computers, or other medical devices. 

Automated Test Environment 
The ideal test setup for the Component Monitoring Sys 
tem was easy to define. We needed a Component Moni 
toring System patient monitor with all parameter modules 
installed, and we needed a human being medically con 
nected to the monitor to (1) provide all of the patient 
signals such as heart rate, blood pressure, and so on, (2) 
change these signals to create alarm situations such as 
asystole or low blood pressure (it is said that Tibetan 

monks could do this), (3) operate the monitor like a phy 
sician or a nurse, (4) watch the monitor's display and 
verify correct operation (parameter numeric values, alarm 
messages), and (5) synchronously document all events. 

Our solution to these requirements is the AUTOTEST 
application (see Fig. 2). 

The AUTOTEST application controls programmable pa 
tient signal simulators which play the role of a critically 
ill patient (items 1 and 2 above). It also controls a key- 
pusher, which can capture and execute keystrokes to op 
erate the monitor (item 3 above). It cannot "watch" the 
monitor's display, but "takes a snapshot" of all important 
information (parameter numeric values, all alarm and in 
operative messages) of the display's content whenever 
needed. All this information is sent over the serial distri 
bution network every second (item 4 above). 

AUTOTEST documents a test run completely into a proto 
col file (item 5 above). This can prove that a certain test 
case has been run and that the unit has passed the test. 
This is important, because regulatory agencies may re 
quest this data, even years after release. 

Parameter Waves 

Parameter Numerics and 
Alarm Messages 

Display Module 

Computer Module and Integrated 
Parameter Module Rack 

Key Bezel 

Parameter Modules 

Fig. 1. HP Component Monitoring 
System with integrated parameter 
module rack. 
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Selected Serial Distribution 
Network Messages 

AUTOTEST Requirements 
The AUTOTEST program requires an HP Vectra ES/12 
personal computer with enough disk space (or better, a 
large disk on a LAN server), serial and parallel interfaces, 
additional dual serial interfaces for the simulators, and an 
HP 78361 A serial distribution network interface. Also 
needed are an HP AUTOMAN keypusher and at least two 
Dynatech 217A programmable patient signal simulators. 
These simulators are widely used in medical R&D, testing, 
and training. Two terminal ports on an HP 3000 computer 
are needed, one for the Vectra PC and one for the AUTO- 
MAN box. 

The software includes the AUTOTEST program package 
(written in C), AUTOMAN software on the HP 3000 com 
puter, and a smart editor on the Vectra PC for reviewing 
the protocol flies, which can be very large. 

The AUTOTEST Program 
AUTOTEST is a very simple but flexible application. It 
reads serially through an ASCII test file and executes 
each line as a command line. The following are available: 

1 Commands to control Dynatech or other RS-232-driven 
simulators connected to serial ports of the Vectra PC 

1 A command to send a keystroke file to the AUTOMAN 
application running on an HP 3000 computer 

1 Commands to get the monitor's data and optionally all 
alarm messages from the serial distribution network 

1 A command to pause the test (lets the tester read the in 
structions) and wait for a comment or just a keystroke to 
continue 

1 Comment lines 
1 A "delay after" parameter (seconds) for every command. 

All commands, all comment lines, all data polled from the 
serial distribution network, and all keystrokes are echoed 
into a protocol file. The system time of the Vectra PC is 
also written into the protocol file before every command 
line. Fig. 3 shows a test file and the corresponding proto 
col file. 

Fig. 2. The AUTOTEST setup for 
automated Component Monitoring 
System testing. 

Loops or branches are not permitted within a test file. 
However, for each test file it is possible to select the 
number of repetitions, and a batch feature allows queuing 
of test files in any combination. 

Any ASCII editor can be used for creating and maintain 
ing test files. 

Test File Development 
The test files were developed in three steps. First, we 
wrote high-level test scripts based on the external refer 
ence specifications, covering all of the functionality. Sec 
ond, we gave these scripts to the R&D engineers for re 
view. Third, we started development of the modular test 
files, beginning with the most important ones (alarms and 
inoperative conditions) and those that are tedious to test 
manually. Tests were grouped into 100% automated tests, 
runs with a few manual interventions, semiautomated 
tests, and manual tests. 

The test files improved in effectiveness over time. Up 
dates were performed constantly when new bugs were 
detected in the software being tested. 

When R&D had finished the implementation of all of the 
system's functionality, the development of all of the test 
files was also complete. Thus, for all of the defect-fixing 
rounds of testing, we ran almost exactly the same tests 
and could show very clearly the trend of the defect rate 
(see Fig. 4). 

Results 
With AUTOTEST, a test cycle now takes only seven work 
ing days. A test cycle consists of 60 hours of automatic 
tests, mostly run overnight and on weekends, 45 hours of 
semiautomatic tests, and 5 hours of manual tests. There 
is also some destructive testing by selected experts, 
which is done in parallel with the systematic testing. Test 
documentation is complete when the testing is finished. 
The system provides a complete regression test package 
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Test File Protocol File 

11:49:40 ### -â€¢â€¢ change alarming parameter to PULSE 
1 1 :49:40 replayed automan file : alapu 

Fig. 3. An example of a test file and the resulting protocol file. 

I  

New Functionality Added Bug Fixing 

0.07 5.10 1.09 2.30 2.40 2.41 2.42 3.00 4.00 4.94 4.96 4.99 5.00 5.10 5.20 
Revisions Tested 

Fig. 4. Defect rate trend as a result of automated 

that can be used for testing revisions and can be easily 
adapted to testing new parameters. 

We wrote one special test file that exercises the Compo 
nent Monitoring System with very fast random keypush- 
ing. As long as the software was not very stable, this test 
file caused the system to crash frequently within a short 
period. With normal testing, we would have had to wait 
weeks to see so many failures. The R&D engineers liked 
this test very much because it gave them a good chance 
to trace the software components and find the causes of 
the crashes quickly. 

Conclusion 
AUTOTEST is an excellent example of an automated 
structured testing implementation. Even though it seems 
to be specially designed for the Component Monitoring 
System, it is not. With some limitations (for example, no 
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keypushing) it can be used for testing any HP patient 
monitor. It can be used simply for a form of guided test 
ing in which AUTOTEST tells the test operator what to 
do and what the desired result is, and requests a key 
stroke P for passed or F for failed. This makes it possible 

to have untrained people running the tests and still get 
complete documentation. AUTOTEST runs on an HP Vec- 
tra personal computer and is written in C, so it is porta 
ble and can easily be modified or extended. 

Production and Final Test of the HP 
Component Monitoring System 
A vertically oriented material flow minimizes handling and simplifies 
customization. Automated final test systems minimize human errors and 
collect data for monitoring process quality. 

by Otto Schuster and Joachim Weller 

One of the keys to success in manufacturing a new prod 
uct is the concurrent design of the product and its pro 
duction processes from the very beginning of a project. 
Therefore, a team of experienced manufacturing engineers 
was integrated into the HP Component Monitoring System 
project and physically located in the R&D laboratory. In 
this way, product designs and production process designs 
were able to influence each other before all details had 
been worked out. 

The plan was also to transfer the product to production 
concurrently in BÃ²blingen and in Waltham, Massachusetts. 
Therefore, manufacturing engineers from Waltham joined 
our team to cover division-specific aspects and to ensure 
productive communication. 

Another key to the product's success was the definition 
of manufacturing goals to which all parties were com 
mitted. The table below shows some of these goals and 
compares the Component Monitoring System with HP's 
previous generation of bedside monitors. 

T o t a l  P a r t  N u m b e r  C o u n t  - 6 7 %  
V e n d o r  C o u n t  f o r  M e c h a n i c a l  P a r t s  - 4 7 %  
Number of Printed Circuit Board Outlines -50% 
A u t o l o a d i n g  P e r c e n t a g e  + 2 7 %  
M a n u f a c t u r i n g  C y c l e  - 5 0 %  

Material Flow 
To reduce material in process and to reduce manufactur 
ing cycle time, it is essential to streamline processes 
without moving material back and forth. Therefore, we 
built up a vertically oriented material flow. Products and 
assemblies can be built independently up to the point 
where they will be assigned to a customer order (see Fig. 
1). This is supported by a product structure that allows 
assignment to a customer order just before packaging. 
For example, the ECG modules are all built identically up 
to the last step, where the product is localized by apply 
ing the overlay label in the appropriate language. 

Final Test 
The objectives for the final test systems were: 
Flexibility to support different types of devices under 
test (DUT) without changing the test setup. 
Use of standard hardware, or design and documentation 
of nonstandard hardware according to HP standards for 
manufactured products. 
Self-test and self-calibration features wherever possible 
to reduce maintenance. 
Accuracy based on the specifications of standard instru 
ments that are calibrated periodically. 
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Consolidate 
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A modular test concept that allows easy addition of new 
parameters, that is, each type of parameter module has 
its individual software module for specifications, test list, 
test procedure, and drivers. 
Ease of learning and operation, even for relatively un 
skilled personnel. This is achieved by a high degree of 
automation, which makes it possible to operate the final 
test systems with very little operator interaction. In addi 
tion, color coding on the display for device types and 
status messages and automatic recognition of the device 
under test are implemented. Instead of manual adjust 
ments, calibration data is generated by the final test sta 
tion and stored in the EPROM of the DUT. To avoid hu 
man errors, test results do not have to be interpreted by 
the operator. 

1 Data accumulation for statistical process control. 

Assign to 
Customer Order 

Fig. 1. HP Component Monitoring 
System production material flow. 

Integration of Test Systems 
The final test systems are based on HP 9000 Series 300 
Pascal workstations, multiprogrammers, diverse HP-IB 
(IEEE 488) instruments, and a parameter module inter 
face, which provides the communication link between the 
DUT and the workstation. All systems are connected to a 
shared resource manager for sharing the files required for 
operation and archiving files containing test results. This 
includes both the final test systems and the temperature 
cycling test systems. 

An HP-UX workstation connected to the shared resource 
manager provides access to the files for other HP-UX 
terminals on a local or wide area network (see Fig. 2). 
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Final Test System #1 

Pascal & ' Parameter Module Interface 
W o r k -  H P - I B  I n s t r u m e n t s  

S t a t i o n  W  l l i i l l i n r n n r Â « m m Â « r  Multlprogrammer 
Analog 

Stimulation 
and Measurement 

Temperature Cycling 

Fig. 2. Integration of the final test 
systems with the temperature cy 
cling test system. 

Monitoring Process Quality 
To improve quality and keep it at a high level, it is impor 
tant to analyze process data online. Therefore, the test 
results of the last 200 devices of each device type are 

Date: FriNov 30 16:00 MEZ 1990 

Test :  M1016 PowerConsumpt ionJest  

-  eva lua t i on  t es t  #2 :  PowerConsump t i on .Tes t  da tacoun t  =  201  -  

held on disc for data analysis. Three different levels of 
information can be generated. The first level is the yield 
of printed circuit boards or modules. A diagram generated 
daily shows trends and can be used as a trigger for a 
more detailed analysis. This analysis represents the next 
level and includes failure summaries and failure hit lists 
for individual tests. The third level provides the distribu 
tion curve for test results over the test limit range along 
with the following statistical process parameters (see Fig. 
3): mean, minimum and maximum values, standard devi 
ation, Cp value (process capability), and cpi< value (pro 
cess controllability). 

This data is not only used for process monitoring. It has 
been used during Component Monitoring System prototyp 
ing to qualify each test and to verify the specification 
limits. Thus, early information about the producability of 
a new product is obtained well before the product is in 
troduced into production and valuable feedback is pro 
vided to the designers. 

Conclusion 
The challenge for manufacturing was not only that the 
Component Monitoring System was a new product, but 
also that it was our first product designed in surface 
mount technology and the first product for the BÃ²blingen 
surface mount technology center. The parallel ramp-up of 
production in BÃ²blingen and in Waltham has proven that 
concurrent production process design is not just an alter 
native, but rather the only way to succeed. 
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Fig. 3. Final test analysis. 

54 October 1991 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Calculating the Real Cost of Software 
Defects 
Using data from a well-established software metrics database and an 
industry profit loss model, a method is developed that computes the real 
cost of dealing with software defects. 

by William T. Ward 

In response to the HP corporate-wide 10 x software quali 
ty improvement initiative, much attention has been fo 
cused on improving the quality of software products de 
veloped throughout HP. The motivation for software 
quality improvement is most often expressed in terms of 
increased customer satisfaction with higher product quali 
ty, or more generally, as a need to position HP as a lead 
er in quality software development. 

A more fundamental motivation to support the initiative 
for higher software quality can be developed when soft 
ware defect cost data is considered. The data presented 
in this paper is drawn from an extensive software project 
database maintained at the HP Waltham Division for prod 
uct releases over the past five years. When software de 
fect cost calculations are performed on this data, a very 
compelling "bottom line" perspective on software quality 
emerges; software defects are very expensive and early 
defect prevention and removal techniques can substantial 
ly enhance the profit realized on software products. 

This paper will present a general model that can be used 
to calculate software defect cost data for any software or 
firmware product. Data from actual HP Waltham projects 
will be used to provide examples of software cost calcu 
lations. 

The Need for Metrics 
As an example of the need for substantive software quali 
ty cost data, consider the situation a project manager 
might encounter when attempting to justify the purchase 
and use of a new software development tool such as a 
static code analyzer. If the cost of the tool is $20,000 and 
if there is reliable data to suggest that the tool will un 
cover 5% of the total number of software defects during 

Metrics 
Database 

Software Development Phases 

Requirements Analysis 
Design 
Code 
U n i t i e s !  

(Integration 
System and Acceptance Tests 
Release 
Postrelease 

Fig. 1. Software life cycle and the phases the software quality 
engineering metrics database covers. 

typical use, is the project manager justified in acquiring 
and using the tool? 

To provide answers to this type of question, it is impor 
tant to have access to a reliable database of software 
quality metrics. Such a database is maintained by the 
software quality engineering group at the clinical systems 
business unit of HP's Waltham Division. This database has 
become an essential component of software quality activi 
ties at HP Waltham and is invaluable for such tasks as 
project scheduling, resource planning, project and product 
quality status reporting, and software defect cost calcula 
tions. 

In addition to maintaining the metrics database, the soft 
ware quality engineering group works with R&D in testing 
and process improvement activities. 

Software Quality Metrics Database 
Fig. 1 indicates the development phases of a typical soft 
ware project, with the phases indicated in which metrics 
are collected and stored into the software quality data 
base. Data is gathered from a variety of sources including 
software defect logging, product comparison studies, proj- 
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Fig. 2. Software defect find and fix cycle. 
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ect post-mortem studies, code complexity and size analy 
sis, and project schedule and resource plans. The physical 
data resides mainly in a standard HP STARS database, 
which has been augmented with additional fields, files, 
and reporting utilities. All of the products represented in 
the metrics database are firmware-based medical devices 
such as critical care monitors, arrhythmia analysis com 
puters, and clinical databases. 

Figs, 2, 3, and 4 represent various types of useful data 
that can be extracted from the database. Fig. 2 docu 
ments the steps that are typically required to find, fix, 
and retest a defect discovered by the software quality 
engineering group during integration and system or accep 
tance testing. The engineering effort for this activity, 
which is shown as 20 hours, represents the average effort 
for finding and fixing one typical software defect. This 
value has been calculated using hundreds of data points 
from multiple software projects that have been tracked 
with the software quality database. Fig. 3 is an example 
of how an accurate schedule for the integration through 
the release phases can be developed using historical proj 
ect data from the database. In this case, it is clear that a 
stable and linear relationship exists between product code 
size and resultant calendar time. Finally, Fig. 4 tabulates 
various software metrics from multiple software projects. 
This data can be very useful for developing project com 
parison studies. 

The data presented in these figures is a small subset of 
the data that exists in the database. This specific data has 
been presented because of its applicability to software 
defect cost calculations. 

Looking for Software Defect Costs 
Software defect costs can be investigated using a variety 
of different approaches. For example, costs can be calcu 
lated on a prerelease or a postrelease basis, or costs can 
be determined per defect or per project phase, or costs 
can be weighted based on code size or programmer pro 
ductivity. The software defect cost data developed in this 
paper focuses on the cost per prerelease software defect 
that is found and fixed during the integration through the 

'The internal Tracking and Reporting System, or STARS, is an HP internal database 
for tracking software defects. 
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Fig. versus Calendar time for integration through release phases versus 
code size for HP Waltham clinical systems business unit projects. 
Each point represents a specific project in the database. 

Fig. quality Typical software metrics for projects in the software quality 
database. 

release phases of project development. This approach is 
used because of the abundance of reliable data points 
available for study and because of the potential utility of 
the results. 

The Software Defect Cost Equation 
The calculation of prerelease software defect cost pro 
posed here is based on the formula: 

Software Defect Cost = Software Defect Rework Cost 
+ Profit Loss 

Software defect rework cost is determined by the amount 
of effort and expense required to find and fix software 
defects during the integration through release phases of a 
software project. Profit loss is the revenue loss that is 
caused by lower product sales throughout the entire post- 
release lifetime of the product. The lower sales factor is 
caused directly by the lengthy find and fix cycle of pre 
release defects that force a schedule slip and result in a 
loss of market-window opportunity. 

Many other factors could probably be used to determine 
the software defect cost but our data shows that the re 
work cost and profit loss factors have a major impact on 
the result and will supply a close first approximation of 
the final value. Table I lists a set of product and project 
software factors that will be used to calculate a software 
defect cost value. All of these factors represent typical 
values derived from our database. 

Table  I  
T y p i c a l  V a l u e s  i n  t h e  M e t r i c s  D a t a b a s e  

Code size 

Calendar time for pre 
release testing 

Number of prerelease 
defects found and fixed 

75 KNCSS 

6 months 

110 defects 

Prerelease defect density 1.5 defects/KNCSS 

Software Defect Rework Calculation 
This calculation is very simple and is based on data pre 
sented in Figs. 2 and 4 and Table I. A typical product will 
have 110 software defects found and fixed during the 
project test phase. Each of these defects will require 20 
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engineering hours to find and fix. The total prerelease 
software rework effort then is: 

Software Defect Rework Effort = 110 x 20 = 2200 
engineering hours. 

To convert this effort value to dollars requires the $/hour 
software engineer factor. As a close approximation of an 
industry standard value, we will use $75/hour as the stan 
dard charge for the services of a software engineer. (This 
includes basic salary + administration overhead of 75%). 

Software Defect Rework Cost = 2200 hours x 
$75/hour = $165,000. 

On a per-defect basis, rework cost can be determined as: 

Rework Cost per Software Defect = 20 hours x 
$75/hour = $1500. 

These calculations are useful in highlighting the true 
waste factor of poor software quality. Each software de 
fect is responsible for $1500 of unnecessary expense, and 
for a typical project $165,000 is required for software 
rework. 

Software Defect Profit Loss Calculation 
The other major factor contributing to software defect 
cost is product profit loss because of missed market-win 
dow opportunities and the resultant loss of product sales. 
In other words, if a product release date slips because 
the software defect find and fix cycle is unnecessarily 
long, then potential product sales are irretrievably lost 
and overall lifetime profit dollars will be less. Such fac 
tors as rapidly obsolete technology and the availability of 
competitive products also contribute to the potential loss 
of sales. 

Several industry models 1Â·2 have been proposed that can 
be used to quantify the profit loss factor. Fig. 5 presents 
one of these models and will serve as the basis for our 
calculations. For the following calculations we assume a 
1000-unit customer base of a $20,000 product with a 15% 
profit margin. This will yield $3,000,000 in lifetime profit. 
Assuming a six-month slip in product release because of 

33% 

50% 
D e v e l o p m e n t  
C o s t  O v e r r u n  

S h i p  P r o d u c t  
6  M o n t h s  L a t e  

S o u r c e :  M c K i n s e y  &  C o .  

C o d e  S i z e :  7 5  K N C S S  

S o f t w a r e  T e s t  P h a s e :  6  M o n t h s  

N u m b e r  o f  P r e r e l e a s e  D e f e c t s :  1 1 0  

S o f t w a r e  R e w o r k  ' W a s t e  :  S 1 6 5 . 0 0 0  
( $ 1 5 0 0  p e r  d e f e c t )  

P r o f i t  L o s s  D u e  t o  R e w o r k :  $ 1 . 0 0 0 . 0 0 0  
f  A p p r o x i m a t e l y  $ 9 0 0 0  p e r  d e f e c t )  

â € ¢ T o t a l  C o s t  o f  S o f t w a r e  D e f e c t s :  5 1 . 1 6 5 . 0 0 0  
( $ 1 0 . 5 0 0  p e r  d e f e c t )  

Fig. 5. Percentage of profit loss associated with product release 
problems. The type of producÃ­s I his data represents have a 
short product life of around rive; years. Examples includi- 
word processors and other consumer elccl ronic 
producÃ­s. 

â € ¢ S o f t w a r e  R e w o r k  C o s t  +  P r o f i t  L o s s  

Fig. 6. Software defect cost summary for a typical software 
project. 

the software defect find and fix cycle, Fig. 5 suggests a 
33% loss in profit. 

Profit Loss = $3,000,000 x 33% = $1,000,000 

Using the data on the number of prerelease defects given 
in Table I, on a per-defect basis, profit-loss can be deter 
mined as: 

$1,000,000/110 defects <*=< $9000 per defect. 

It may seem extreme to say that every prerelease defect 
causes a product to be late to market. However, because 
of the nature of our business, it is important that our 
products perform reliably in the critical-care medical envi 
ronment. This means that each defect of a high enough 
severity level that is found during prerelease tests must 
be fixed and retested before final release. It is this test, 
fix, and retest cycle that delays product release and con 
tributes to the cost of poor software quality. 

The $1,000,000 Opportunity 
Fig. 6 summarizes the software defect cost data calcu 
lated in this paper. The variables used in these calcula 
tions will vary from one organization to another, but the 
fundamental algorithm for computing software defect cost 
is applicable to most cases. Although the product cost 
and profit margin numbers used here are for illustrative 
purposes, they are typical for large software systems. 
Therefore, with the potential for a cost of $10,500 per 
defect and $1,165,000 per project, there is ample financial 
basis for a number of potential remedial actions. 

Quality Awareness. Most software engineers probably have 
no idea about the cost of reworking software to find and 
fix a defect once the code enters the integration and test 
phases. They should be made aware of the savings possi 
ble if more defect detection could be done in the early 
stages of product development. 

CASE Investment. There are a large number of CASE tools 
and methodologies available to augment the software de 
velopment process. Examples of modern CASE technolo 
gy include static code analyzers, debuggers, execution 
profilers, formal inspections of design and code, struc 
tured analysis and design, and so on. Most of these tech 
nologies can be acquired for a financial investment of 
$10,000 to $30,000. If each software defect has a $10,500 
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cost, then it is clearly appropriate to consider the use of 
CASE to improve software quality. 

Software 10 x Program: When it becomes clear that soft 
ware quality improvements can yield substantial financial 
rewards, then the goal of a 10 x gain in software quality 
assumes additional impetus. Consider that a 10 x im 
provement of the number of prerelease software defects 
for the typical software project presented in this paper 
would yield almost an additional $1,000,000 in profit. That 
figure is a powerful bottom line motivator. 

Conclusion 
This paper has presented a technique that can be used to 
calculate software defect cost values. Historical HP Wal- 

tham software quality and project data has been applied 
to cost calculations so that realistic results might be ob 
tained. Although additional investigations, such as a deter 
mination of postrelease software defect cost, might pro 
vide a more detailed analysis of cost, the data presented 
in this paper is accurate and provides compelling finan 
cial motivation for improved software quality. 
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A Case Study of Code Inspections 
The code inspection process is a tool that can be used early Â¡n the 
software development cycle to help improve the quality of software 
products and the productivity of development engineers. 

by Frank W. Blakely and Mark E. Boles 

Code inspections have become an integral part of the 
software development life cycle in many organizations. 
Because it takes some project time and because engineers 
initially feel intimidated by the process, code inspections 
have not always been readily accepted. Additionally, there 
has not always been enough evidence (metrics) to prove 
that for the time and effort invested, the process has any 
value in reducing defects and improving overall software 
quality. Since the early days, the process has become bet 
ter understood and documented, and recent articles have 
provided concrete metrics and other evidence to justify 
the value of the process.1'-''5 

This paper describes our experiences in bringing the code 
inspection process to HP's Application Support Division 
(ASD). We describe both the positive and negative find 
ings related to using code inspections. Although we only 
have metrics for one project, our main goal here is to 
present how we implemented the inspection process and 
to illustrate the type of data to collect and what might be 
done with the data. 

Background 
In 1988 our division was in the process of searching for 
best practices and methodologies that could help us meet 
or exceed the company-wide 10 x quality improvement 
goal. Design and code inspections were two of the meth 
odologies that we proposed. Management agreed to sanc 
tion a pilot project using code inspections, with imple 

mentation of a design inspection process deferred to a 
later date. 

The authors attended the software inspections class given 
by HP's Corporate Engineering software engineering train 
ing group. This knowledge was then imported to our divi 
sion, and several classes were taught to the engineers to 
prepare them to be participants in the code inspection 
process. 

To begin using the code inspection process on a pilot 
basis, a software project that involved enhancing an exist 
ing product was selected. To ensure that we could im 
prove the process and learn from our experience, we de 
cided to record and analyze the results from each code 
inspection. This way we would have some data to back 
up any claims we had regarding the value of the process. 
The metrics and data we decided to collect and analyze 
included: 

â€¢ The criteria to use in selecting modules to inspect. 
â€¢ The criteria for selecting participants in the process. 
â€¢ The methodology used while performing the inspection. 
â€¢ The relative effectiveness of code inspections in improv 

ing quality versus standard testing via module execution. 
â€¢ The merits of doing code inspections before or after 

bench testing a software module. 
â€¢ The number of defects found in a product in the first year 

after release that might have been found in code inspec 
tions. 
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' The costs of addressing defects found in the first year 
after release during the inspection phase versus during 
the maintenance phase. 

Engineers from the quality and productivity department of 
our division taught the inspections class before starting 
the pilot project. They also acted as moderators for the 
formal code inspections. R&D software engineers from 
several different projects participated as authors, readers, 
and inspectors. There was also a technical marketing en 
gineer who participated as an inspector. 

Implementation of the Code Inspection Process 
Developing a set of criteria for which modules to inspect, 
who should participate in the inspections, and what meth 
odology to follow were the first issues that needed to be 
resolved in implementing the inspection process. Two 
methodologies were used in our implementation: formal 
and informal inspections. The pilot project used the for 
mal, more structured process presented in the inspections 
class, while later projects used both formal and informal 
methodologies. The comparative success of the two meth 
odologies has not been fully determined, but some of the 
results are described later. 

Module Selection. Because a software product is made of 
many modules, the time it would take to inspect every 
module might be prohibitive. Therefore, criteria must ex 
ist to determine which modules should be inspected. Two 
criteria were used to identify the modules to be in 
spected. First, modules were selected only if they were 
modified in the course of the project (remember this was 
an enhancement project). Second, the complexity of the 
modified modules was determined. Module complexity 
has been shown to be a good indicator of the defect 
proneness of a software module â€” the higher the complex 
ity, the greater the likelihood there are defects. Therefore, 
complexity was used to identify those modules that were 
the best candidates for inspection. The original plan was 
to determine the complexity of modules using the 
McCabe complexity tool,4 which is based on the McCabe 
complexity metric.5 Unfortunately the McCabe tool could 
not accurately identify the complexity of the modules 
written in MS-DOS macro assembler language. This led to 
attempts to roughly quantify the complexity of these mod 
ules, relying on the opinion of the module's author as to 
its complexity. The result was that modules were in 
spected based on the amount of modification to the mod 
ule and a rough estimate of their complexity. 

Participant Selection. A code inspection is a structured 
process in which each participant has a clearly defined 
role. Inspection participants were selected based on their 
knowledge of the language in which the module was writ 
ten. Attempts were also made to select engineers who 
were also knowledgeable about the high-level structure of 
the product. We could not find many engineers with this 
knowledge so this criterion was abandoned and knowl 
edge of the development language became the predomi 
nate criterion. 

Formal Code Inspections. The methodology we used for 
formal code inspections required that the author select 

the module to be inspected and prepare inspection pack 
ets for the moderator, code reader, and inspectors." The 
code inspection packet was distributed two days before 
the scheduled inspection date. The packet consisted of a 
cover sheet and listings (with line numbers) of the mod 
ule to be inspected. The cover sheet detailed the time 
and place of the inspection meeting, the participants, and 
a brief description of the module to be inspected. Be 
cause some of the engineers who participated as inspec 
tors and readers were unfamiliar with the design of the 
modules, additional information was sometimes added to 
the packets to improve the effectiveness of the process. 
Additions included module descriptions, pseudo code, and 
design overview documents describing the design of the 
module. 

Before the meeting the moderator was responsible for 
confirming the availability of the meeting participants for 
the time and date of the inspection. Inspectors were re 
quired to prepare for the inspection, and if they could not 
guarantee adequate preparation, notify the moderator so 
that the inspection could be rescheduled. Usually on the 
the day before the meeting, the moderator would check 
to make sure that everyone was ready. 

During the meeting the following rules were followed to 
avoid conflicts and ensure a productive process. 

â€¢ Critiques of the coding style used in the module being 
inspected were avoided. 

â€¢ Problems were to be indicated and identified, but solu 
tions were not to be offered during the inspection meet 
ings. 

â€¢ Comments were to be phrased in a nonthreatening way, 
focusing on what the module did, as opposed to what the 
author might have done. 

â€¢ Antagonistic ways of expressing points of view were 
avoided. 
The meetings were limited to one hour. Data from other 
divisions showed that longer meetings drained the inspec 
tion team and decreased their effectiveness. 

Two forms were used to gather the data from the code 
inspections: the code inspection log and the code inspec 
tion detail log (see Fig. 1). The code inspection log de 
scribed the module inspected, the participants, their prep 
aration time, the hours of engineering effort involved, the 
number of lines inspected, and the number of problems 
identified. The defects identified were categorized by se 
verity, and whether and how they could have been found 
in the absence of code inspections. The code inspection 
detail log identified a problem by page and line number 
in the module source, and provided a description of the 
problem and its severity. At the end of the meeting a de 
cision was made as to the advisability of scheduling a 
reinspection of the module if the number of problems 
found was unacceptable. If the author made extensive 
changes to the inspected modules while fixing inspection- 
identified defects, this would possibly create a need for 
reinspection. 

*We actual ly  had two inspectors The author  acted as an inspector .  
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Moderator . 
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TOTAL  ENGR EFFORT 
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T O T A I    B Y  P R O D / S Y S  T E S T    B Y  C U S T O M E R .  

(a) (b] 

Fig. log. (a) Code inspection log. (b) Code inspection detail log. 

In the postinspection meetings, the moderator and the 
author met so that the moderator could give the collected 
information to the author. The author was then responsi 
ble for implementing the defect repairs. If enhancements 
had been identified in the inspection, these were either 
accepted or rejected by the author and the moderator. 

Informal Code Inspections. Informal code inspections were 
not a part of the pilot project. Several informal code in 
spections were performed on later projects and as a part 

Fig. 2. Summary of code inspection statistics. 

of the pilot project's CPE (current product engineering) 
or postrelease activities. There was no preparation re 
quired for these informal code inspections. The code's 
author would request that another engineer sit and look 
over a module or a submodule at the time of the meeting. 
There was no moderator, and no formal documentation of 
the process. Usually, the engineer who was asked to in 
spect was familiar with the overall design of the module 
being inspected. 

Data Collected 
As mentioned earlier we tried to collect data that would 
enable us to evaluate the effectiveness of the code in 
spection process. The code inspection data collected in 
cluded the number of: 

â€¢ Lines of noncomment source statements (NCSS) in 
spected 

' Engineering hours of preparation required 
' Engineering hours spent in code inspection meetings 
â€¢ Defects and enhancement requests found during the 
meeting. 

Because the effort required to fix a defect is the same 
regardless of how it is found, no data was collected on 
the time taken to fix defects or implement enhancements. 
Also, because the implementation of the informal code 
inspection process was done in a way that permitted a 
wide data in the statistics collected, insufficient data 
exists to determine clearly the effectiveness of informal 
code inspections. Fig. 2 summarizes the statistics from 
our pilot project and some follow-on projects in which 
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NCSS = Noncomment Source Statements 

Fig. 3. Major modules and percent of code inspected. 

both formal and informal code inspection processes were 
used. Fig. 3 shows the major modules and the amount of 
code inspected from each module. 

From the data shown in Fig. 2, the ratio of preparation 
time to inspection time can be calculated as 1.83 for the 
pilot project, and 1.13 for the formal inspections done for 
a follow-on project. The ratio for all of the projects was 
1.76. The inspection rate for the pilot project was 200 
lines o'f NCSS per meeting hour. For the follow-on proj 
ect it was 196 Unes, bringing the overall rate to 199 lines 
per meeting hour. The defect finding rate was 0.243 de 
fects per engineering hour (preparation hours plus meet 
ing hours) for the pilot project and 0.118 for the follow- 
on project, bringing the overall defect finding rate to 
0.233. Work done by other HP divisions showed that for a 
one-hour meeting, 200 lines of code is about the most 
that can be covered before the defect finding rate begins 
to decline. 

The metrics for preparation time and lines per meeting 
can be used to estimate for future projects the amount of 
time required for inspections so that projects can budget 
in their schedules a reasonable amount of time for in 
spections. The defect finding rate can be used to corre 
late between the effectiveness of different types of testing 
and the complexity of modules so that the overall valida 
tion of the code design can be optimized. 

During the development phase of the project, test log 
sheets were used to collect data about defects found dur 
ing testing and the number of hours devoted to testing. 
This data was used to help analyze traditional testing 
versus code inspections. 

Defects reported by customers against the pilot product 
during the first year after its release were also collected. 
The objectives of gathering this data were: 

â€¢ To determine whether the defects were in modules that 
had been inspected 

â€¢ To determine why, if the defects were in inspected mod 
ules, they were not found during the inspection 

â€¢ To determine why modules with defects were not in 
spected 

"For total formal inspection, there were 4 participants and a total of 30.4 hours were 
spent in meetings. Thus, 30.4 engineering hours in meetings equals 7.6 meeting hours, 
resulting in 200 lines per meeting hour (151 6 lines/7.6 meeting hoursl 

â€¢ To determine the relative costs of addressing the defects 
found by customers compared with the cost of putting 
more effort into performing code inspections. 

The data collected also included the number of hours of 
online and offline support spent identifying and verifying 
the problems, the number of engineering hours spent 
identifying the causes, the appropriate fix for the defect, 
and whether the modules in which the defects were 
found were inspected. Additional information allowed 
estimation of the time required to perform code inspec 
tions on those modules not inspected. 

Comparison to Testing Process 
For comparison with the traditional testing process (i.e., 
module execution), defects for the pilot project were 
categorized according to the method used to find the de 
fect and the defect cause. Fig. 4 shows this categorization 
for the pilot-project defects. Note the inclusion of custom 
er-found defects. Fig. 5 shows the severity of defects 
found classified by severity and test type. Note that in 
spections found defects in each of the standard severity 
categories. 

Figs. 4 and 5 do not reflect comment defects or defects 
resulting from incorrect design. Both types of defects 
were found and noted but not counted. 

If Inspections Had not Been Done 
The defects found by code inspections were analyzed to 
determine whether they might have been found if code 
inspections had not been done. While these classifications 
are not certain, they were our best determination based 
on knowledge of the product, the test environment, and 
the way in which the product would be used. Fig. 6 
shows where in the process we think certain defects 
would have been found if they had not been caught by 
code inspections. 

As a further aid in analyzing the effectiveness of code 
inspections as a verification tool, the defects found during 
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Methods of Defect Detection 

System 
Test 
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Delect Causes 
I Operating System 
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'A Datacom Changes 
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Fig. 4. Defects categorized by cause and methods used to detect 
the defects. 
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Fig. 5. Defects categorized by severity and method of detection. 

inspections were divided into categories based on the 
following questions about each defect. 

1 Would the defect have been found by the existing test 
process? 

1 Could a test be devised to find those defects that would 
not be found by existing tests? 

1 Would customers find those defects that would not be 
found by existing tests? 

â€¢ Would some of these defects not be found by any of the 
above methods? 

Of the 21 defects found by code inspections, only four 
could have been found with new tests. 

Defects Found by Customers 
An analysis was made of the defects found by customers 
in the time since the pilot product was released. This 
allowed us to attempt to determine why the defects were 
not identified and fixed before the release of the product. 
Fig. 7 shows the distribution of defects found by custom 
ers and the reasons associated with the defects. These 
reasons include: 
The defect was a global error, not specific to a module or 
modules. 
The defect existed in a dependent product. 

â€¢ The module was not inspected because it was not modi 
fied. This also indicated that our test suites were not thor 
ough enough. 

â€¢ The module was not inspected because modifications 
were not considered significant. 

â€¢ The module was inspected, but the defect was not identi 
fied. 

The defects classified in the first two categories were 
those for which a code inspection could not have identi 
fied the defect. 

The cost of having customers find defects in the product 
compared to the cost of using code inspections to find 
these defects was measured by collecting cost informa 
tion from the response center, support engineering, R&D, 
and test and manufacturing. The average time of a re 
sponse center call was determined and used to estimate 
the response center cost of handling a defect. The cost of 
the time spent by the support engineer was determined 
based on the time spent in responding to calls about de 
fects in the product. The cost of the time spent by devel 
opment engineers was based on the time spent identifying 
the cause of the defect, the time to fix it if necessary, 
and the time required to test the defect once it was fixed. 
Estimates of the time required to perform system testing 
and the manufacturing costs were also collected. The 
results showed that it costs approximately 100 times 
more to fix a defect in a released product than it costs to 
fix a defect during the code inspection phase. 

One important cost that cannot be directly measured in 
currency is the loss of customer satisfaction when the 
customer finds a defect. Because this cost is hard to 
quantify, it is sometimes ignored, but the fact is that it 
does affect the profitability of products. 

' The  f i e l d  cen te r  i s  t he  p r imary  con tac t  f o r  cus tomers  and  HP f i e l d  pe rsonne l  t o  ob ta in  
help wi th HP software.  
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Fig. 7. Defects found by customers. 
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Fig. may Distribution of where code-inspection defects may or may 
not have been found if they had not been found during the code 
inspection process. 
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Benefits 
Besides the cost savings realized by finding and fixing 
defects before they reach the customer, there are other 
benefits associated with doing code inspections. These 
benefits are not easy to measure, but they do have an 
impact on quality and productivity. 
Code inspections allow defects to be found early in the 
product development cycle. This has the benefit of reduc 
ing the number of product builds and certification cycles 
required to complete the development of a product. This 
benefit is difficult to quantify because there is no way to 
measure the build cycles that might be required for a giv 
en number of defects. However, one product build and 
certification cycle is a minimum of 40 hours in our envi 
ronment. 

1 The code associated with a defect found during a code 
inspection is immediately identified at the inspection. 
When a defect is found by testing, all that is known is that 
something somewhere doesn't work correctly, and the 
additional work necessary to identify the lines of code 
that are at fault is unknown. 

1 Because code inspections require a great deal of commu 
nication among the participants, cross training and idea 
sharing are byproducts of the inspection process. Other 
engineers involved become familiar with modules they 
did not write, and acquire a better understanding of the 
entire product. Also, engineers from other projects ac 
quire a better understanding of products other than their 
own. 

Issues 
Four issues came out of the code inspection process. 
These were in the area of procedures or aspects of the 
implementation rather than condemnations of the process 
in general. 

First, the primary consideration in selecting inspectors 
was their ability to read and comprehend the program 
ming language being inspected. A lack of understanding 
of the design was not considered an impediment to par 
ticipation. However, this was an impediment to making 
the inspections as effective as possible because the in 
spectors could not always effectively identify situations 
where the implementation did not match the intended 
design. 

This led to the second area of difficulty â€” the need for 
formal design reviews. The lack of formal design reviews 
results in engineers outside of the project having little 
familiarity with the details, or even in some cases with 
the overall design of a product. A lack of a design review 
process inhibits the effectiveness of code inspections on 
projects with a small number of engineers. 

The third issue involves deciding when a module should 
be inspected. We determined that the code inspection 
process should be used after the developer believes that 
the designed functionality is correctly implemented, and 
before testing is done. All inspectors and readers should 
be familiar with the overall product design and the imple 
mentation of the module being inspected. 

Finally, the defects that were missed and could have been 
found in the inspection process indicated that we need to 
find a way to improve the methods used to identify po 
tential defect areas during the process. 

Conclusion 
Based on the data collected about the use of code inspec 
tions, and the data concerning the cost of finding and 
repairing defects after the product has been released to 
the customer, it is clear that the implementation of code 
inspections as a regular part of the development cycle is 
beneficial compared to the costs associated with fixing 
defects found by customers. 

The formal code inspection process is a significant bene 
fit in fostering quality and productivity in product devel 
opment. The formal process is structured and requires 
documentation and accountability. These attributes make 
it easy to measure and improve the process. From our 
experience with informal inspections, it is not clear 
whether the process provides any benefits. However, as 
an aid to improving the quality of the implemented code, 
it is worth further investigation. 
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6  C o m p o n e n t  M o n i t o r i n g  S y s t e m  

Christoph Westerteicher 

Chris Westerteicher was the 
project manager for the HP 
Component Monitoring Sys 
tem computer module and 

- j Â £ j ^ - i ^  d i s p l a y s .  A s a  r e s u l t  o f  h i s  
team's efforts, production of 
the HP Component Monitor 
ing System has been auto 
mated and streamlined to a 

major extent. With parts standardization, only 300 
parts are needed for the entire system. Chris joined 
HP's Boblingen Medical Division in 1980, shortly after 
earning a diploma in electrical engineering from the 
University of Stuttgart. He became an R&D designer 
of displays and interface cards for HP medical moni 
tors, and is currently a project manager for anesthe 
sia information systems. Chris is the author of a tech 
nical article on 1C design productivity and is a 
member of the VDE. Born in Stuttgart, he lives in 
Leonberg, is married, has a daughter, and enjoys 
swimming, gardening, and traveling. 

\ 

1 0  H a r d w a r e  A r c h i t e c t u r e  

Werner E. Heim 

R&D engineer Werner Heim 
joined HP's Boblingen Medi 
cal Division in 1986, soon 
after earning his electronics 
engineering diploma from 
the University of Braunsch 
weig in Germany. He devel 
oped computer module hard 
ware, including the 

backplane, CPU, utility CPU, and EPROM, as well as 
the utility CPU firmware for the HP Component Moni 
toring System. Born in Giessen-Hessen, Germany, 
Werner lives in Herrenberg, Baden-Wurttemberg, and 
enjoys music and books. 

Christoph Westerteicher 

Author's biography appears elsewhere in this section. 

1 3  S o f t w a r e  A r c h i t e c t u r e  

Mart in Reiche 

Project leader Martin Reiche 
was responsible for the fun 
damental design of the soft 
ware architecture, operating 
system and development 
environment, and patient 
signal processing software 
for the HP Component Moni 
toring System. His team's 

efforts resulted in automation of all external activities 
and a smooth integration of each module into the 
monitoring system. This produced enhanced product 
reliability and efficiency. After joining HP's Boblingen 
Medical Division in 1982, he developed EGG and re 
spiratory signal processing for the HP 78832 and 
78833 neonatal patient monitors. Martin received his 
electrical engineering diploma in 1981 from the Uni 
versity of Wuppertal. Born in Wuppertal near Co 
logne, Germany, he lives in GÃ¡ufelden, is married, and 
has one child. He enjoys bicycling, music, and natural 
and life sciences, especially psychology. 

1 9  P a r a m e t e r  M o d u l e  I n t e r f a c e  

Winfried Kaiser 
Winfried Kaiser was the 
project leader and designer 
for the parameter module 
interface, front-end firm 
ware, module rack, and 
some of the parameter mod 
ules for the HP Component 
Monitoring System. His ef 
forts resulted in a front-end 

link that provides fast response, optimum use of 
available bandwidth, configuration detection, and 
synchronization for a wide variety of modules. After 
earning his engineering diploma in 1982 from the 
University of Karlsruhe, Winfried joined HP's Boblin 
gen Medical Division in 1982. He has developed hard 
ware and firmware and been a project leader for sev- 

eral patient monitoring systems, and is now a project 
manager for patient monitoring products and en 
hancements. Born in Lahr in the Black Forest, Win- 
fried lives in Boblingen, is married, has one son, and 
enjoys traveling, swimming, and family activities. 

2 1  M e a s u r i n g  t h e  E C G  S i g n a l  

Wolfgang Grossbach 

Hardware R&D engineer 
Wolfgang Grossbach de 
signed and developed the 
ECG/respirationHPM1001A 
and M1002A modules and 
mixed analog-digital applica 
tion-specific integrated cir 
cuits (ASIC) for the HP Com 
ponent Monitoring System. 

The modules and circuits produced significant reduc 
tions in cost, power consumption, size, and compo 
nent count. Wolfgang joined HP's Boblingen Medical 
Division in 1985, shortly after receiving his electronic 
engineering diploma from the University of Stuttgart. 
Born in Salzburg, Austria, Wolfgang lives in Murr, 
Germany. He is married, has two daughters, and en 
joys jogging, bicycling, photography, and reading. 

2 5  B l o o d  P r e s s u r e  M o d u l e  

Rainer Rometsch 

Mechanical design engineer 
Rainer Rometsch developed 
the pump assembly for the 
noninvasive blood pressure 
module and plastic parts for 
the display front assembly in 
the HP Component Monitor 
ing System. The result of his 
efforts is one of the smallest 

self-contained noninvasive blood pressure modules in 
the world â€” a unit that can be built in about two min 
utes. Rainer joined the R&D unit at HP's Medical 
Products Group Europe in 1 986, and is now working 
on respiratory gas measurement. He is named as an 
inventor in a patent on noninvasive blood pressure 
measurement. He received an engineering diploma in 
1 986 from the Engineering School of Furtwangen. 
Born in Muhlheim/Donau (Baden-Wiirttemberg), Rain 
er lives in Wildberg in the Black Forest. He is married, 
has two children, and enjoys working on his house 
and garden and restoring old BMW motorcycles. 

2 6  S t r i p c h a r t  R e c o r d e r  

Leslie Bank 

Project manager Les Bank 
helped develop the two- 
channel stripchart recorder 
for the HP Component Moni 
toring System. The efforts of 
his team resulted in a break 
through in reducing the size, 
cost, and power consump 
tion of monitoring recorders. 

Les. a member of the IEEE, earned a BS degree in 
electrical engineering in 1 969 from the City College of 
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New York and an MS degree in electrical engineering 
in 1973 from Northeastern University. He joined HP's 
Waltham Division in 1973 as a production engineer, 
working on patient monitoring systems. Before join 
ing HP, Les was a design engineer with Raytheon Co. 
Bom in New York City, he lives in Framingham, Mas 
sachusetts, is married, and has two children. 

2 9  H u m a n  I n t e r f a c e  

Gerhard Tivig 
a Gerhard Tivig was the proj 

ect leader for development 
of the human interface for 

^ ^ ^ ^ ^ ^  t h e  H P  C o m p o n e n t  M o n i t o r  
ing System. He also devel 
oped software for the alarm 
manager and localization 
tools that allow efficient 
generation of local language 

versions so the monitor can be used worldwide. Ger 
hard joined HP's Boblingen Medical Division in 1980, 
where he researched and developed display software 
and invasive pressure parameters for HP monitoring 
systems. He received an engineering diploma in 1975 
from the Technical University in Bucharest, Romania, 
and later worked for two years as a system program 
mer for bedside monitor software systems at Mennen 
Medical Center in Israel. He is named an inventor in a 
European patent for the Component Monitoring Sys 
tem's human interface. Born in Bucharest, Gerhard 
lives in Boblingen. He is married, has two daughters, 
and enjoys family activities and traveling. 

Wi lhe lm Me ie r  

Wilhelm Meier was the de 
sign engineer responsible for 
the HP Component Monitor 
ing System's human inter 
face design, simulation, and 
implementation. He de 
signed an intuitive, easy-to- 
use consistent control sys 
tem for all applications and 

all members of the HP Component Monitoring System 
family. He joined HP's Boblingen Medical Division in 
1982 and developed human interface software for the 
HP 78353, 78834. and 78352 medical monitors, gain 
ing experience in human factors and human interface 
design. He is named an inventor in a European patent 
for the Component Monitoring System human inter 
face. He is now responsible for improvements and 
enhancements to the Component Monitoring System 
human interface software. Wilhelm earned an electri 
cal engineering diploma from the Technical University 
of Hannover in 1 981 . Born in Obernkirchen in Lower 
Saxony, he lives in Herrenberg, Baden-Wurttemberg, 
is married, and has two children. 

3 7  G l o b a l i z a t i o n  

Gerhard Tivig 

Author's biography appears elsewhere in this section. 

4 0  P h y s i o l o g i c a l  C a l c u l a t i o n  

Steven J. Weisner 
As the software project lead 
er for data management of 
the HP Component Monitor 
ing System bedside monitor, 
Steve Weisner was respon 
sible for the system's exter 
nal specifications and con 
tributed to software 
development. His team's 

efforts resulted in a physiological calculation applica 
tion that reduces the large amount of raw vital-signs 
data into derived values the clinician uses to assess a 
patient's condition. He joined HP's Waltham Division 
in 1 982 and has worked as a project leader for the HP 
central station and as a software engineer for the HP 
arrhythmia monitoring system, SON interface, and 
patient data management systems. His professional 
specialties include human interface design and clini 
cal information management. Steve is now a soft 
ware project leader for HP cardiac care systems, re 
sponsible for external specifications and user 
interface design. Before joining HP, he was a soft 
ware engineer with Cornell University. He received a 
BA degree in 1976 in biology from Cornell University, 
and an MS degree in 1981 in biomedical engineering 
from the University of Wisconsin. A member of the 
IEEE, he is the author of technical articles in the IEEE 
Transactions on Biomedical Engineering and in the 
Proceedings of the Human Factors Society. Born in 
Paterson, New Jersey, he lives in Lexington, Massa 
chusetts, has a daughter, and enjoys bicycling and 
sailing. 

Paul Johnson 
Paul Johnson, a software 
development engineer 
whose professional interests 
include real-time operating 
systems, implemented the 
hemodynamic, oxygenation, 
and ventilation physiologic 
calculation displays and for 
mulas for calculating the 

displayed values for the HP Component Monitoring 
System. These calculated values are good predictors 
of major malfunctions or mortality in intensive care 
patients. Paul joined HP's Waltham Division in 1978 
after receiving a BSEE degree in 1 968 from Purdue 
University and an MSCP degree in 1 986 from the Uni 
versity of Lowell in Massachusetts. He was a soft 
ware engineer for HP's computer-aided manufacturing 
department, a production engineering manager, and a 
development engineer in R&D. Before joining HP, he 
was a development engineer with the Medical Divi 
sion of American Optical Co. and a hardware engi 
neer with Raytheon Corp. A six-year U.S. Navy veter 
an, Paul was born in Elkhart, Indiana, and lives in 
Groton, Massachusetts. He is married, has two chil 
dren, and enjoys playing golf and listening to jazz. 

4 4  M e c h a n i c a l  I m p l e m e n t a t i o n  

Karl Daumuller 
Karl Daumuller was the me 
chanical design project lead 
er for the computer module, 
displays, and mounting hard 
ware for the HP Component 
Monitoring System. He 
helped reduce the number of 
parts dramatically over pre 
vious patient monitoring 

designs. After joining HP's Boblingen Calculator Divi 
sion in 1979, he served for two years as a process 
and production engineer for desktop computers and 
peripheral products. Karl worked as a mechanical 
design engineer for over eight years at HP's Boblin 
gen Medical Division, developing the HP 7835x family 
of patient monitors, HP 8040 and 8041 cardiotoco- 
graphs, and mounting hardware for hospital installa 
tions. Now the virtual source engineering manager 
for the Boblingen Manufacturing Operation, he is re 
sponsible for centralized sourcing of sheet metal and 
cabinet parts for all German manufacturing divisions. 
Karl received an engineering diploma from the Engi 
neering School of Esslingen in 1979. Born in Stuttgart 
in Baden-Wurttemberg, he lives in Filderstadt, is mar 
ried, has four children, and enjoys family and church 
activities and gardening. 

Erwin FlachslÃ nder 

Mechanical engineer Erwin 
FlachslÃ nder was responsi 
ble for the mechanical de 
sign of parameter modules 
for the HP Component Moni 
toring System. He helped 
design an enclosure that can 
be assembled and serviced 
without any tool. Erwin 

joined the R&D division of HP's Boblingen Medical 
Division in 1985, shortly after receiving his mechani 
cal engineering diploma from the Engineering School 
of Ulm. At HP, he has worked on a TC-p02/C02 cali 
brator system. He is named as an inventor in a patent 
on a connector for the blood pressure monitor. Before 
joining HP, Erwin was a mechanic in manufacturing 
and production at two different companies. Born in 
Kempten, Bavaria, he lives in Boblingen, is married, 
has two children, and enjoys motorbiking, photogra 
phy, and playing a music synthesizer. 

4 8  A u t o m a t e d  T e s t  E n v i o r n m e n t  

Dieter Goring 

^ ^ | ^ L  S o f t w a r e  q u a l i t y  e n g i n e e r i n g  
t P  ^ ^  m a n a g e r  D i e t e r  G o r i n g  d e -  

|  M  v e l o p e d  t h e  a u t o m a t e d  s o f t -  
\ ! f . \  w a r e  t e s t  e n v i r o n m e n t  f o r  

the HP Component Monitor 
ing System. He designed the 
AUTOTEST tool and devel 
oped a suite of structured 
tests, which runs 60 hours of 

automatic tests and 45 hours of semiautomatic tests 
overnight and weekends. Dieter received his engi 
neering diploma from the Engineering School of Furt- 
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wangen Â¡n 1967. After joining HP's Computer Systems 
Division in Bdblingen, Germany in 1973, he served as 
an R&D engineer, project engineer for automated test 
systems, communications and office automation man 
ager, and information technology manager. Before 
joining HP, he was an application programmer and a 
software project engineer. Born in Dusseldorf, he 
lives in Bobiingen, is married, has two children, and 
enjoys sports, music, reading, and traveling. 

5 2  P r o d u c t i o n  a n d  F i n a !  T e s i  

Otto Schuster 

Production engineer Otto 
Schuster was responsible for 
the production process de 
velopment and design for 
manufacturing of the HP 
Component Monitoring Sys 
tem. He helped ensure the 
concurrent design of the 
product and its production 

processes â€” the first HP product designed in surface- 
mount technology in the Bobiingen technology center. 
Otto joined HP's Bobiingen Medical Division in 1979, 
shortly after receiving an engineering diploma in elec 
trical engineering from the Engineering School of 
Esslingen. He served as a production engineer for the 
HP 78352, 78353, and 78354 monitoring systems. A 
resident of Heimsheim in Baden-Wurttemberg, where 
he was born, Otto is married, has two sons, and en 
joys skiing, bicycling, and gardening. 

J o a c h i m  W e l l e r  

Production engineer Joachim 
Weller was responsible for 
the design and development 
of front-end production test 
systems for the HP Compo 
nent Monitoring System and 
for HP-UX tools for statistical 
process control. He also 
worked closely with R&D on 

design testability, and helped reduce manufacturing 
cycle time on the monitoring system. After joining 
HP's Bobiingen Medical Division in 1 984, he was re 
sponsible for the production of patient monitors and 
the development of a new generation of final test 
systems for the HP 78352, 78354, and 78356 patient 
monitoring systems. Joachim received an engineering 
diploma in 1984 from the Engineering School in Ess 
lingen. Born in Stuttgart in Baden-Wurttemberg, he 
lives in Herrenberg, is married, has two children, and 
enjoys amateur radio, windsurfing, camping, and 
studying foreign languages. 

5 5  C o s t  o f  S o f t w a r e  D e f e c t s  

W i l l i a m  I  W a r d  

Jack Ward joined HP's Wal- 
tham Division in 1982 and 
has worked on the software 
and firmware development 
of critical care bedside moni 
tors, arrhythmia analysis 
systems, and medical data 
base systems. As the man 
ager of software quality en 

gineering, Jack is now responsible for testing each of 
these products for use in medical environments. He 
earned a BS degree in linguistics in 1972 from the 
University of Illinois and an MS degree in computer 
science in 1984 from Boston University. Before joining 
HP, he worked as a software support engineer for 
Data General Corp. The author of several articles pub 
lished in technical journals, Jack teaches undergradu 
ate and graduate courses in C, C++, and software 
quality at Boston University. Born in Winona, Missis 
sippi, he lives in Brookline, Massachusetts, is mar 
ried, has three children, and enjoys music, gardening, 
and jogging. 

5 8  C o d e  I n s p e c t i o n s  

Frank W. Blakely 
Client/server computing and 
software quality improve 
ment are the professional 
interests of Frank Blakely, a 
software engineer at HP's 
Applications Support Divi 
sion. Frank joined HP's In 
formation Resources Opera 
tion in 1980. He helped 

develop a code inspection process tool for HP's Data 
Management Systems Division that is now used early 
in the software development cycle to help improve 
the quality of software products and the productivity 
of development engineers at his division. Before join 
ing HP, Frank was an MIS programmer at LooArt 
Press, Inc. and a programmer/analyst with Informa 
tion Resources Ltd. He is a graduate of Colorado Col 
lege, earning a BA degree in mathematics in 1973, 
and a graduate of the University of Oregon with an 
MS degree in mathematics in 1977. Frank is named 
as an inventor in a patent pending on HP cooperative 
services. Born in Colorado Springs, Colorado, Frank 
lives in Roseville, California, is married, and enjoys 
cross-country skiing, hiking, playing board games, and 
participating in the Placer County Fair Association. 

Mark E. Boles 

A software quality engineer 
in HP's Applications Support 
Division, Mark Boles is re 
sponsible for metrics collec 
tion, process improvement, 
and implementing processes 
and new methodologies for 
software development. He 
helped develop a code in 

spection process model for HP's Data Management 
Systems Division that is now used early in the soft 
ware development cycle to help improve the quality 
of software products and the productivity of develop 
ment engineers at his division. Mark joined HP's Com 
puter Systems Division in 1 982, shortly after earning 
a BSEE degree from San Jose State University. He 
became a hardware reliability engineer for environ 
mental and reliability testing for the HP 3000 comput 
er and process improvements, and later a software 
quality engineer responsible for test and productivity 
tools. Client-server application integration is his pro 
fessional interest. Mark is a member of the American 
Society of Quality Control. Born in National City, 
California, he lives in Roseville, is married, and enjoys 
car restoration, snow and water skiing, and building 
electric trains with his three-year-old son. 

6 9  H P  V e c t r a  4 8 6  P C  

Larry Shintaku 

Project manager Larry Shin 
taku and his team developed 
the HP Vectra 486 PC acces- 

, sories. Their new develop 
ment processes helped HP 

J market the first personal 
V Ã  /  c o m p u t e r  t o  u s e  t h e  I n t e l 4 8 6  
'  m i c r o p r o c e s s o r  w i t h  a n  E I S A  

bus. Larry joined HP's Data 
Terminals Division in February, 1980, two months af 
ter receiving a BS degree in electrical engineering 
from Fresno State College in California. As a hard 
ware designer, he developed the HP 2623A/2 termi 
nal graphics subsystem, and later, as a project man 
ager, he helped develop the expanded memory card 
for the HP 1 50 Touchscreen PC. Larry is now manag 
ing the development of the next generation of HP 
Vectra 486 PC products. Before joining HP, he worked 
in digital communications with Dantel Inc. A member 
of the IEEE, Larry was born in Fresno and lives in 
Union City. He enjoys racquetball, low-budget motion 
pictures, and Softball. 

7 3  E I S A  C o n n e c t o r  

Michael  B.  Raynham 

Exploring the creative links 
between art and technology 
are among the professional 
interests of Mike Raynham, 
an R&D development engi 
neer at HP's California Per 
sonal Computer Division. 
Mike helped design the HP 
Vectra 486 PC and its Ex 

tended Industry Standard Architecture (EISA) connec 
tor. He helped achieve an extremely fast development 
cycle of six months from initial concept to production 
of the first EISA connectors, which allow EISA amd 
ISA I/O cards to be handled in the same connector. 
Mike also worked on hardware development for the 
HP 2 1 1 BB, 2 1 0OA, and 3000 computers, the HP 
2644A, 2645A, 2648A, 2647 A, and 2703A terminals, 
and the HP 150 Touchscreen II, HP Vectra RS16/20, 
and HP Vectra 486 personal computers. Before joining 
HP in 1 963 in Bedford, England, he worked as a film 
recording engineer with the British Broadcasting Cor 
poration and as an apprentice with British Aerospace. 
He is named as an inventor in patents or patents 
pending for a display panel, digital encoding/decod 
ing techniques, DRAM on-chip error correction, low- 
cost connectors, and 1C surface-mount process defect 
detection designs. Mike is a member of the IEEE and 
acted as chair of the Desktop Futurebus+ subcommit 
tee. He earned an H.N.C. degree in 1962 from Luton 
College of Technology and an MS degree in 1971 
from Santa Clara University, both in electrical engi 
neering. Born in Winnersh, England, he lives in the 
Santa Cruz mountains in California, is married, and 
has two sons. He enjoys clay sculpture, ceramic tile 
painting, and watercolor painting. 
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D o u g l a s  M .  T h o r n  

j Â · ^ r Â ·  J B  A s  a n  e n g i n e e r  a n d  p r o j e c t  
â€¢""â€¢â€¢l' ||J manager, Doug Thorn per- 

I  f  - -  â € ” e Ã    r e s e a r c h  a n d  d e v e l -  
*  ^  f  o p m e n t  o n  H P ' s  f i b e r  o p t i c  

components. He is now a 
section manager at HP's 
California Personal Comput 
er Division. Doug helped 
achieve an extremely fast 

development cycle of six months from initial concept 
to production of the first EISA connectors, which al 
low EISA and ISA I/O cards to be handled in the same 
connector. He joined HP's Optoelectronics Division in 
1980, and is now listed as an inventor on a patent on 
fiber optic component design and an inventor on a 
patent pending on the EISA connector. Before joining 
HP, he was a consumer product designer with Nation 
al Semiconductor Corp. and Fairchild Semiconductor. 
He earned BS degrees in 1975 in electrical and me 
chanical engineering from the University of California 
at Davis. Born in San Mateo, California, Doug lives in 
Woodside, California, is married, and has a son. He 
enjoys sailing, carpentry, architecture, cooking, and 
gardening. 

7 8  H P  V e c t r a  M e m o r y  C o n t r o l l e r  

M a r i l y n  J .  L a n g  

Marilyn Lang joined HP's 
California Personal Comput 
er Division in 1981 and 
worked on 1C test vector 
generation and simulation 
for the HP 1 50 video control 
ler ASIC. She also designed 

_ ^ ^ ^ ^  t h e  H P - H I L  p o r t  e x t e n d e r  
â€¢â€¢^Â· "Â» used in the HP Vectra RS/1 6, 

RS/20 and ES/12 PCs. Marilyn then worked on 
memory subsystem analysis and design for the HP 
Vectra 386 PC, which led to her work on the memory 
controller ASIC design for the HP Vectra 486 PC. Her 
efforts helped produce a high-performance, burst- 
mode capability that enhanced the competitive price/ 
performance of the HP Vectra 486 PC. Marilyn earned 
a BS degree in 1975 in chemistry from the Southern 
Illinois University at Carbondale, an MS degree in 
biochemistry in 1979 from the University of Illinois at 
Urbana, where she also studied computer science, 
and an MSCSE degree in 1988 in computer science 
and engineering from Santa Clara University. Born in 
Chicago, Illinois, Marilyn lives in Milpitas, California, 
is married, has a daughter, and enjoys gardening, 
science fiction/fantasy, and classical music. She is a 
member of the National Gardening Association and 
various humane and wildlife societies. 

G a r y  W .  L u m  

Project manager Gary Lum, 
whose professional special 
ties include memory technol 
ogy and design, was respon 
sible for developing the HP 
Vectra 486 memory control 
ler and memory subsystem 
architecture. His efforts re 
sulted in a high-performance 

burst-mode memory capability that helped enhance 
the competitive price/performance advantage of HP's 

25-MHz system. Gary joined HP's Data Terminals Divi 
sion in 1979 and worked as a project manager for HP 
Vectra PC accessory cards, on the HP Vectra PC and 
HP Vectra ES PC, and on 1C design for the HP 150 
TouchScreen II PC. A member of the IEEE. Gary was 
born in Syracuse, New York, lives in Cupertino, 
California, is married, and enjoys film and film history, 
photography, and gardening. 

8 3  H P  V e c t r a  B I O S  

T h o m a s  T o m  

R&D software engineer 
Thomas Tom joined HP's 
California Personal Comput 
er Division in 1989 and de 
veloped the firmware for 
security features and the 
Micro-DIN mouse support for 
the HP Vectra 486 Basic I/O 
system (BIOS). He is now 

uesigning sonware 10 support features of HP's new 
est PCs. Thomas is a 1983 graduate of the California 
Polytechnic State University at San Luis Obispo with 
a degree in electrical engineering. Before joining HP, 
he developed real-time satellite simulation software 
for Stanford Telecommunications, Inc., and developed 
test software to evaluate integrated circuits at NEC 
Corp. Thomas lives in San Francisco, where he was 
born, and enjoys basketball, tennis, bowling, and bik 
ing. 

I r v i n  R .  J o n e s ,  J r .  

Computer and system archi 
tecture and artificial intelli 
gence are the professional 
interests of Irvin Jones, a 
software engineer who 
helped develop the HP Vec 
tra 486/25T system BIOS. 
His efforts helped ensure 
that the HP Vectra 486 PC 

makes the most efficient use of its Intel486 micropro 
cessor, the EISA bus, and new memory subsystem. 
Since joining HP's California Personal Computer Divi 
sion in 1988, Irvin also helped design the system 
BIOS and system utilities disk for the HP Vectra 
LS/1 2, the HP Vectra 486/33T PC, and the HP Vectra 
386 PC, Before joining HP, Irvin worked as a digital 
designer on photocopier function cards for IBM, on 
the microcontroller design of professional video sys 
tems for Sony Corporation, and on a parallel comput 
er peripheral interface for Bell Communications Re 
search. A member of the IEEE and the Triathlon 
Federation, Irvin is named as an inventor of two pat 
ents pending for HP's PC BIOS. He earned a BS de 
gree in electrical engineering from Stanford Universi 
ty in 1982, an MS degree in computer engineering in 
1986 and an MS degree in computer science in 1988 
from the University of California at Santa Barbara. 
Born in Dayton, Ohio, he lives in San Jose, California, 
and enjoys triathlon competition, playing jazz on the 
vibraphone and drums, and collecting comic books. 

C h r i s t o p h e  G r o s t h o r  

Real-time low-level software 
design and application de 
velopment are the profes 
sional specialities of Chris 
tophe Grosthor. He joined 
HP's Grenoble Personal Com 
puter Division in 1988 as a 
software engineer and de 
signed software for the HP 

Vectra 486 PC BIOS and the HP Vectra 386/25T PC 
BIOS. He helped ensure that the HP Vectra 486 PC 
makes the best use of its Intel486 microprocessor, the 
EISA bus, and a new memory subsystem. He received 
an MS degree in electronics from the University of 
Toulouse, France, in 1986 and a software engineering 
degree from Ecole Nationale Superieure des Telecom- 
munuications de Bretagne in 1988. Before joining HP, 
Christophe worked on object-oriented compiler de 
sign as a software engineer for Interactive Software 
Engineering, Inc. in Santa Barbara, California. Born in 
Strasbourg, France, he lives in Grenoble, is married, 
and enjoys sports, mountain hiking, and traveling. 

V i s w a n a t h a n  S .  N a r a y a n a n  

Software development engi 
neer Suri Narayanan devel 
oped the EISA initialization 
procedures for the HP Vectra 
486 PC BIOS. His efforts 
helped ensure that the HP 
Vectra 486 PC makes the 
best use of its Intel486 mi 
croprocessor, the EISA bus, 

and a new memory subsystem. After joining HP's 
California Personal Computer Group in 1988, he de 
veloped BIOS designs for the HP Vectra 386/25 PC, 
and is now working on future HP personal computer 
products. Suri received a BS degree in 1980 from the 
Regional Engineering College in Warangal, India, and 
an MS degree in electrical engineering in 1985 from 
the University of Wyoming. Born in Secunderabad, 
India, he lives in Fremont, California, is married, and 
enjoys gardening and playing basketball. 

P h i l i p  G a r c i a  

B Phil Garcia was responsible 
A i f r \ \  r t  f o r  t h e  E I S A  C M O S  B I O S  

,  I  i n t e r f a c e  a n d  t h e  c a c h e  c o n -  
I  f Â « ( j C R , ^ ^  t r o l  B I O S  c o d e .  H e  h a s  

â€¢ JÂ¿a Jft worked on keyboard micro- 
~  -  P  c o n t r o l l e r  f i r m w a r e  d e s i g n  

i  I  and PC uti l i t ies design for HP 
Vectra PCs. After joining HP's 
Data Terminals Division in 

1 982 as a development engineer, he worked on ana 
log design for the HP 2700 color graphics workstation 
and the HP 1 50 Touchscreen PC, and on EMI/RFI com 
pliance design for the HP 1 50 and HP Vectra PC. A 
Stanford University graduate, he received a BAS de 
gree in economics and electrical engineering in 1979, 
and an MSEE degree in analog 1C design in 1 981 . Phil 
is named as an inventor in two pending patents on PC 
BIOS designs. Born in New York City, he lives in Sara 
toga, California, is married, and enjoys hiking, skiing, 
old movies, and museums. 
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9 2  V e c t r a  P e r f o r m a n c e  A n a l y s i s  

John D. Graf 

^ ^ ^ .  Â »  D e v e l o p m e n t  e n g i n e e r  J o h n  
Graf joined HP's California 
Personal Computer Division 
in 1989, right after earning a 
BS degree in electrical engi 
neering from Rice University. 
He then designed hardware 
tools to measure the perfor 
mance of existing PCs, and 

developed mathematical and software models to 
evaluate and predict the performance of future archi 
tectures. These performance tools were used to de 
sign and enhance the performance of the HP Vectra 
486 PC and the HP Vectra 486/33T PC. John's profes 
sional interests are focused on evaluating the perfor 
mance characteristics of CPU, cache, memory, and 
video. Born in Baton Rouge, Louisiana, he lives in 
Sunnyvale, California, is married, and enjoys CajÃºn 
cooking, bodysurfing, and volunteer work in a church 
youth group. 

1 â€¢ 

David W. Blevins 

As a hardware development 
engineer at HP's California 
Personal Computer Division, 
Dave Blevins developed the 
hardware for the backplane 

^Vl j ,  I /O monitor,  a noninvasive 
 l k ' y $ ,  '  t o o l  t h a t  h e l p s  a n a l y z e  a  
I  i  p e r s o n a l  c o m p u t e r ' s  s u b s y s  

tem workload and provides 
data for predictive system modeling. Dave, who 
joined HP's Southern Sales Region in 1982 as a cus 
tomer engineer in the New Orleans sales office, was 
a member of the HP Vectra RS/20 development team, 
a CAE tools support engineer, and a hardware devel 
opment engineer. He left HP in 1 990 to join MINC, 
Inc. in Colorado Springs, Colorado, as an applications 
engineer. Dave received a BSEE degree in 1982 from 
Washington State University. Born in Middletown, 
Ohio, he lives in Colorado Springs, Colorado, and is 
married. Dave enjoys music synthesizers and comput 
er music sequencing, high-performance motorcycles, 
mountain biking, and playing guitar in a local jazz-fu 
sion group. 

Christopher A. Bartholomew 

Chris Bartholomew joined 
HP's California Personal 
Computer Division in 1989 
soon after earning BS de 
grees in computer science 
and in electrical engineering 
from Texas A&M University. 
As an HP system perfor 
mance engineer, Chris devel 

oped the disk, I/O, and BIOS performance modeling 
hardware and software tools that help to noninva- 
sively analyze a personal computer's workload in 
these subsystems. These tools were first used to de 
sign and enhance the performance of the HP Vectra 
486/25T PC and the HP Vectra 486/33T PC. Chris' 
professional interests include embedded program 
ming, object-oriented programming, performance 
modeling, and multiprocessor architectures. He is a 
member of the IEEE and the IEEE Computer Society. 
Before joining HP, he was a systems programmer at 
Compaq Computer Corp. Born in Jackson, Michigan, 
Chris lives in Fremont, California, is married, and en 
joys camping, radio-controlled airplanes, fishing, and 
racquetball. 
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The HP Vectra 486 Personal Computer 
The HP Vectra 486 series of computers uses the Intel486â„¢ microprocessor, 
a custom-designed burst-mode memory controller, and the HP 
implementation of the Extended Industry Standard Architecture (EISA). 

by Larry Shintaku 

The HP Vectra 486 PC was the first of HP's new genera 
tion of personal computers using the Intel486 micropro 
cessor and the EISA (Extended Industry Standard Archi 
tecture) bus architecture. The Intel486 is a high-perfor 
mance microprocessor that integrates the CPU, 8K bytes 
of cache, and a math coprocessor onto one chip running 
at a clock speed of 25 or 33 MHz. The CPU instruction 
set is optimized to execute instructions and move data in 
fewer clock cycles than its predecessor, the Intel386 mi 
croprocessor. The EISA bus was defined by an industry 
consortium of which HP is an active member. The EISA 
bus definition objectives were to migrate the existing 
16-bit Industry Standard Architecture (ISA) bus into a 
32-bit bus, improve the DMA performance, and provide 
support for multiple bus masters while maintaining back 
wards compatibility with all existing ISA backplane I/O 
cards. 

The HP Vectra 486 development objective was to deliver 
these two new technologies to market quickly. We were 
presented with several technical and product development 

â€¢Recent releases of the HP Vectra 486 series include the Vectra 486/25T and Vectra/33T; 
the latter uses the 33-MHz version of the Intel486 microprocessor. 

challenges in trying to meet this objective. These chal 
lenges included: 

1 Defining a physical bus connector that would accommo 
date both EISA and ISA cards (see article on page 73) 

â€¢ Incorporating all the new technical design features that 
EISA offers 

1 Developing performance enhancements targeted for the 
memory and mass storage subsystems. 

System Overview 
The Vectra 486 uses the existing upright floor package 
that is used by the HP Vectra RS series (see Fig 1). Its 
mass storage, power, and feature options matched our 
customer requirements for high-end server and CAD appli 
cations. The form factors for the printed circuit boards, 
already defined by the Vectra RS PC package, fixed the 
amount of logic each board could support, the logic de 
sign and printed circuit board partitioning, and the func 
tional, EMC, and performance objectives. The functional 
objectives were met by partitioning the system compo 
nents so that follow-on EISA products could easily lever 
age core components developed by the HP Vectra 486 

Fig. 1. The HP Vectra 486 per- 
siiiiiil computer. 
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team. The EMC objectives were met by minimizing, 
through design, source radiation and harmonics caused by 
mismatched impedances. The design required that clock 
speeds up to 66 MHz be distributed over several printed 
circuit boards and connectors. Meeting the EMC objec 
tives was very important since they represented a poten 

tial delay in the schedule if regulatory requirements were 
not met. The performance objectives were met through 
the development of an Intel486 burst-mode memory con 
troller and a high-performance hard disk subsystem. The 
burst-mode memory controller is described on page 78 
and the disk subsystem is discussed on this page. 

The HP Vectra 486 EISA SCSI Subsystem 

HP's advanced PC mass storage products have consistently provided customers 
with HP and conformance to industry standards. The HP Vectra 486 PCs 
continue this tradition by providing a high-performance storage subsystem that is 
compatible with EISA and SCSI-2 (Small Computer System Interface) industry 
standards. 

The investigation of customer needs for the first EISA PC, the Vectra 486, revealed 
that the highest-performance PCs were entering new application areas. Customer 
and application requirements resembled more those of the workstation or mini 
computer user than those of an individual running a word processing application. 
Demanding compatibility with the IBM PC AT, customers also insisted upon high 
capacity, performance, and reliability for such applications as PC CAD, multiuser 
UNIX operating systems, and multiclient file servers. 

HP's responded PC Division's (CPCD) advanced storage team responded by develop 
ing, Division with its invaluable partners at HP's Disk Memory Division (DMD) and 
Adaptec, a new ESDI (Enhanced Small Device Interface) disk family and Industry 
Standard Architecture (ISA) disk controller. Each of the new 20-Mbyte/s disk drives 
from storage provides up to 670 Mbytes of 16-ms average access time storage at an 
MTBF (mean time between failures) of 1 50,000 hours. Adaptec's controller not only 
supports the drive's data rate, but also provides a 64K-byte read-ahead cache. By 
continuing to read data past the user's request, the controller's cache already has 
additional data the user is likely to want later. At its introduction, the Vectra 486's 
storage while provided excellent performance, capacity, and reliability while 
staying PC-AT software compatible. 

The engineers at CPCD realized that although powerful for its time, the ISA disk 
subsystem's performance had approached its architectural limits. Further perform 
ance improvements could only come with fundamental design changes. Unlike ISA 
disk subsystems, a new architecture would take full advantage of the EISA I/O bus 
and other new technologies 

The first products based on this new architecture appeared with the introduction 
of the Vectra 486/33T. Targeting once again the multiuser UNIX operating system 
environment and Novell Netware file server customers, the advanced storage 
team brought to market the PC industry's first EISA SCSI-2 storage subsystem. 
Contributors from all disciplines in the PC industry supplied state-of-the-art compo 
nents. the suppliers developed the EISA SCSI host adapter and the 
440-Mbyte to 1000-Mbyte SCSI-2 disk drive family while software suppliers 
created the industry's first tagged queuing SCSI-2 disk drivers for the Santa Cruz 
Operation UNIX operating system and the Novell Netware network operating 
system. 

Tagged intelli queuing is a feature of SCSI-2 that allows a peripheral to intelli 
gently does I/O requests from the host computer. The peripheral can, but does 
not have to, reorder the sequence of the I/O command stream to optimize its ex 
ecution. By use of the queue tag, the peripheral can associate the I/O request with 
the data, thereby not requiring that the data be associated with a single pending 

"UNIX is a U.S. registered trademark of UNIX System Laboratories in the U.S.A. and other 
countries. 

Sending 
Order 

101 + Tag1 
102 + Tag2 

103 + Tag3 
104 + Tag4 

105 + Tag5 

104 + Tag4 1 

101 + Tag? Â°rder  
102 + Tag2 J 

IO = 1,0 Request 
Tag = Queue Tag 

Fig. 1. Tagged queuing. 

I/O request. Fig. 1 illustrates this concept. Five I/O requests are generated all at 
once reorder re sequence shown. The peripheral device decides to reorder the re 
quests for optimal execution and gives the completed requests back to the host 
adapter in the optimal order. The host adapter associates the returned data with 
the correct tag, and reassembles the I/O thread originated by the system. 

From 10-Mbyte/s 32-bit bus master host adapter, which supports up to 10-Mbyte/s single- 
ended fast SCSI, to the 12-ms access time caching disk drive, the hardware com 
ponents represent some of the best of today's technology applied to the PC envi 
ronment. However, choosing the highest-performance components is only part of 
the development story. Tuning each subsystem component for UNIX and Netware 
application performance made the Vectra 486/33T more than the sum of its parts. 
The team optimized each of SCSI-2's performance parameters and features while 
staying within the industry standard. Additional HP proprietary performance tuning 
of the drive's 1 28K-byte cache further enhances system performance. 

Today's PC SCSI subsystem offering is just the beginning. The architecture can 
support a wide variety of SCSI peripherals available industry-wide. For the first 
time PC customers can have access to such diverse peripherals as CD-ROM, tape, 
DAT, and removable magnetooptical storage. In addition, this EISA SCSI architec 
ture allows for system performance growth as the industry continues to develop 
SCSI-2 meet its full potential. The SCSI-2 storage subsystem architecture will meet 
the challenge of future customer needs for both added performance and greater 
peripheral connectivity. 

Differentiating products that are based upon widely available industry standards is 
difficult. After all, an Intel486 microprocessor runs just as fast for another PC 
vendor as it does for HP. HP's strength lies not only in its SPU architecture but also 
in its and to fulfill particular customer needs. Every Vectra 486 and 486/33T 
storage subsystem has been optimized to provide customers with the best per 
formance and reliability in an EISA PC. 

Mike Jerbic 
Development Engineer 
California PC Division 
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Fig. 2. (a) Logical partitioning of 
the Vectra 48(1 s.vslcm. (h) Physi- 
al parlil ioiiinn of I he Vectra 486 
system 

The physical partitioning of logic (see Fig. 2a) divides the 
system into five printed circuit board assemblies (see Fig. 
2b). The core assemblies consist of a motherboard con 
taining the core EISA control logic and local I/O logic, 
and two vertical printed circuit assemblies containing the 
physical I/O connectors for the keyboard, mouse, and 
three I/O ports: two serial and one parallel. These core 
assemblies can be leveraged for future EISA products. 
The remaining two assemblies are the CPU and memory 
printed circuit board assemblies. The CPU board contains 
the Intel486 and related control logic, and the memory 
board contains the HP burst-mode controller and SIMM 
(single in-line memory module) sockets for RAM memory 
upgrade. 

Product Development Overview 
The time-to-market objectives for the HP Vectra 486 prod 
uct required a new approach to the normal development 
process used for past products. Managing three parallel 
technology developments, the Intel486, the EISA bus con 
troller chips, and the memory controller, and keeping the 
project on an aggressive schedule was the main challenge 
for the HP Vectra 486 team. To add to the challenge, two 
of the three critical technologies in development were 
outside HP (i.e., the Intel486 and the EISA bus control 
ler). The first step was to outline the overall development 
approach that would meet the time-to-market objectives 
with a product that met our quality standards. The devel 
opment process also had to be flexible enough to track 
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the parallel development of the Intel486 processor and 
the EISA chipset. The resulting development approach 
consisted of two main phases of execution (see Fig. 3). 
Our traditional product development cycle required three 
to four phases. 

We felt we could combine the breadboard and the labora 
tory prototype phases and still meet all the requirements 
for determining feasibility, design for manufacturing, de 
sign for EMC, quality, and functional verification in the 
first phase. This approach took less time and cut out 
redundant or ineffective processes. After making the nec 
essary changes to the design in the first phase of the 
project, the second phase focused on getting the man 
ufacturing process ready for volume production and ex 
ecuting product qualification testing for HP environmen 
tal, regulatory, and quality requirements. 

Many processes were performed in parallel to reduce the 
amount of development time which, in many cases, in 
creased the risk of having to address dependency prob 
lems caused by something failing. Other important pro 
cesses were put in place to address these potential 
development roadblocks. An example was the establish 
ment of direct interactive technical communication links 
with outside companies for technical reviews and 
changes. This liaison saved days or weeks of development 
time for the HP Vectra 486 team. The team also made 
sure that contingency plans were made for the critical 
processes such as printed circuit board layout, fabrica 
tion, prototyping, and the tools of development to ensure 
that progress would be maintained in most circumstances. 

The HP Vectra 486/33T 

During develop latter stages of the HP Vectra 486/25T development program, develop 
ment of new Vectra 486/33T was initiated. This system, designed around the new 
Intel486 33-MHz microprocessor, provides higher performance at a lower cost in 
LAN server, multiuser, and PC CAD applications. By combining this processor tech 
nology on enhanced memory and mass storage subsystems and by building on 
the achievements of the Vectra 486/25T, the Vectra 486/33T program was driven 
by three major objectives: fast time to market, high performance, and high quality. 
To meet the challenges of these three objectives, the development team implem 
ented two key strategies; the first was focused system design understanding, and 
the second was ongoing process improvements. 

System Development 
A strategy of the HP Vectra 486 implementation was to partition the system com 
ponents to provide easy leverage for follow-on EISA products such as a 33-MHz 
system. The areas of engineering and product reuse were the package and power 
system, three core printed circuit assemblies, and the video adapter card. Through 
performance analysis of the Vectra 486/25T system, we were able to focus on the 
areas that would significantly contribute to our objectives. These areas included 
design for 33 MHz, the addition of a high-performance second-level cache, inclu 
sion of both write and memory buffers, and integration of a new high-performance 
SCSI (Small Computer System Interface) hard disk subsystem. 

To achieve the required performance levels for the 33-MHz system, it was deter 
mined that a second level cache (in addition to the on-chip Intel486 8K-byte cache) 
was necessary. Simulations also showed that significant performance gains could 
be achieved through the addition of a bus write buffer and a memory write buffer. 
Therefore, the CPU design includes a 128K-byte, 2-way set associative, write- 
through cache, with one level of bus write buffers. In addition, support for an 
optional Wietek 41 67 floating-point coprocessor was added to further meet the 
needs performance our customers requiring increased floating-point performance for their PC 
CAD applications. 

Further performance simulation and analysis showed that the capabilities of HP's 
custom Vectra memory controller, first implemented on the Vectra 486/25T, 
would optimizing to offer superior performance, with minor changes for optimizing 
33-MHz the and with the addition of a memory write buffer. Therefore, the 
design of the memory controller was leveraged for use in this higher-performance 
system. In fact, the result of the redesign of the memory PCA is a memory board 
that can support both the Vectra 486/25T and 486/33T, with optimal performance 
enhancements for both. 

During to Vectra 486/33T design, the team was continuously looking for ways to 
improve the quality and manufacturability of the system. A significant contribution 
to this goal was made on the CPU board by eliminating all discrete delay lines. 
This was achieved through the use of delay lines implemented by traces on the 
printed circuit board. Using simulation and an understanding of the physical prop 
erties excel the printed circuit board, the team was able to deliver delays with excel 
lent characteristics and margins. This resulted in higher reliability, lower costs, and 
improved manufacturability. 

Process Development 
To achieve the fast time to market, the team needed to apply the lessons learned 
from using efforts of the Vectra 486/25T program. In addition to using the improve 
ments To for that program, several other enhancements were required. To 
ensure well- focus, the team constantly reviewed their decisions against the well- 
communicated list of "musts" and "wants". Increased levels of simulation were 
used along with frequent design reviews. New and improved processes were 
instituted for supporting the prototype systems used in test and verification and for 
tracking and solving defects found during these phases. The result of all of these 
efforts was a very efficient system verification cycle leading to a timely manufac 
turing release of a high-quality product. 

Mark Linsley 
Section Manager 
California PC Division 
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Conclusion 
The Vectra 486 development team was confronted with 
the challenge of bringing an Intel486-based product to 
market almost simultaneously with the announcement of 
the Intel486 microprocessor. By using new development 
processes, the HP Vectra 486 was the first computer on 
the market using the Intel486 CPU and the EISA bus. 
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The EISA Connector 
Providing backward compatibility in the EISA connector hardware for ISA 
I/O boards resulted in a bilevel connector design that provides pins for 
both bus standards in the same connector. 

by Michael B. Raynham and Douglas M. Thorn 

One of the reasons for the rapid growth of the personal 
computer (PC) market is the wide variety of compatible 
software and hardware peripherals available for these 
machines. This compatibility has been provided by a de 
facto industry-standard bus specification called Industry 
Standard Architecture (ISA). Although started with the 
original IBM PC system architecture, the standard has 
evolved to where it can be adopted by any PC manufac 
turer, thus providing a stable platform for software and 
hardware development. 

The EISA (Extended Industry Standard Architecture) is a 
superset of the ISA 8-bit and 16-bit architecture. The im 
portant features of the EISA specification include: 
Full compatibility with the ISA standard. ISA 8-bit and 
16-bit expansion boards can be installed in EISA slots. 

Support for a 32-bit address path and for 16-bit or 32-bit 
data transfers for CPU, DMA, and bus master devices. (A 
bus master is a device that drives the address lines and 
controls the signals for a bus cycle.) 
An efficient synchronous data transfer protocol that pro 
vides for normal single transfers and the cycle control 
required to execute burst cycles up to 33 Mbytes/s. 
Automatic translation of bus cycles between EISA and 
ISA masters and slaves. 
Support for a bus master architecture designed for intelli 
gent peripherals. With EISA-based computers the bus 
controller can operate some of the lines on behalf of the 
bus master. 
A centralized bus arbitration scheme that supports pre 
emption of an active bus master or DMA device. The 
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EISA arbitration method grants access to the bus for 
DMA devices, DRAM refresh, bus masters, and bus and 
CPU functions on a fair, rotational basis. 

â€¢ Level-triggered, shareable interrupts. Edge-triggered op 
eration ensures compatibility with interrupt-driven ISA 
devices. Level-triggered operation facilitates sharing of a 
single system interrupt by a number of devices. 

â€¢ Automatic configuration of system and expansion boards. 
EISA expansion board manufacturers provide configura 
tion files and product identification information so that 
during system initialization these boards can be automati 
cally configured into a system (see page 84). 

More detailed information about the EISA bus can be 
found in references 1, 2 and 3. 

Engineers from HP's personal computer group were in 
volved in defining the physical and electrical design of 
the I/O bus, the board connectors, and the logic control 
ling bus timing for the EISA bus specification. Their most 
obvious contribution was the "double-decker" EISA con 
nector. This connector has two levels of pins. The first 
level maintains ISA compatibility and the second level 
adds the pins for the EISA bus specification. This article 
will describe the EISA connector and some aspects of the 
development partnership that led to the development of 
the connector and I/O card hardware. 

Background 
The EISA connector was an important part of the imple 
mentation of the EISA bus standard. At the time we 
started this project there was no connector available that 
met the general electrical and mechanical characteristics 
required for EISA. Some solutions were proposed but 
they were discarded because they were not competitive in 
size and electrical performance. The IBM MicroChannel* 
bus architecture had already doubled the pitch of con 
tacts from 0.100-inch to 0.050-inch centers on their con 
nectors, and it was felt that the EISA solution must use 
this contact density to be competitive. 

The technical responsibilities for the proposed EISA bus 
design were divided among a small group of the original 
EISA consortium companies. The responsibilities for the 
definition, development, and sourcing for the EISA con 
nector were given to Hewlett-Packard and Compaq Com 
puter Corp. 

Because the EISA connector was the first physical evi 
dence of the EISA hardware, it became important from a 
public relations standpoint that the design not only be 
backward compatible with ISA, but also be perceived as 
technically superior (e.g., higher-performance, well de 
signed, etc.). 

The availability of production connectors was a serious 
concern because once the design was finalized the poten 
tial demand for connector hardware would be very high. 
To ensure that a high-volume supply would be available, 
and to manage the technical risks, it was decided to re 
cruit at least two major connector manufacturers to de 
velop and produce the connector. HP and Compaq Com 
puter Corp. recruited Burndy Corporation and AMP 

"MicroChannel is the bus architecture developed for the IBM Personal System/2 computers. 

Incorporated into the EISA consortium to participate in 
the design. 

Organizational Challenges 
The connector project was managed primarily by a joint 
team of HP and Compaq engineers representing the EISA 
consortium. The team attracted connector manufacturers 
using the number of customers within the consortium to 
convince the manufacturers of the magnitude of the busi 
ness opportunity for EISA connectors. The preliminary 
design requirements were established by HP and Compaq 
Computer Corp. as part of the EISA technical specifica 
tion. This technical specification, which was revised and 
published periodically by the consortium, was the single 
specification that all connector vendors used to develop 
their specific connector designs. The periodic revision of 
the specification proved very valuable in maximizing the 
collective technical contributions of the connector ven 
dors. All potential vendors could obtain a set of technical 
requirements by joining the EISA consortium. These ven 
dors could also recommend technical ideas for the design, 
which, if adopted, would become part of the specification. 
All technical contributions incorporated into the specifica 
tion became the intellectual property of the consortium, 
and therefore, became available to all members. This pro 
cess produced a very robust and thorough connector 
specification by using the collective efforts of all partici 
pants, some of whom were direct competitors. Fig. 1 
shows the design and development information flow dur 
ing this process. 

The connector's technical specification was a perform 
ance-based specification. Except for the basic mechanical 
dimensions, all parameters were specified based on elec 
trical, environmental, mechanical, or process performance. 
This performance-based approach allowed each vendor to 
provide subtle but significant design features in their final 

Periodic 
Revisions to the 

EISA Specification 

EISA 
Consortium 

Technical Requirements 
from EISA Specif ications 

EISA 
Architects 

â€¢ Hewlett-Packard 
â€¢ Compaq Computer 
k Corp. Design Inputs and 

Technical Feedback 

Fig. 1. Information now during the design and development of 
the EISA connector. All connector manufacturers received the 
EISA bus specification and provided feedback to the EISA 
connector architects without interfacing to other manufactur 
ers. This provided the best possible technical design without 
compromising vendor confidentiality. 
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EISA Configuration Software 

One of the specifications of the EISA standard defines the process for configuring 
EISA was into a computer system. When the EISA consortium was being formed. 
Compaq config Corp. started the initial development of the software for config 
uring assigned slots. Soon after development began, two HP engineers were assigned 
to work with Compaq in the development effort 

The configuration software detects the presence of accessory cards inserted into 
the EISA slots of the computer and provides a process to configure the cards into 
the system. The configuration process begins with the configuration program 
reading a configuration file for each of the accessory cards installed in the EISA 
slots. the configuration file contains information about the card that enables the 
program to determine the optimum settings for any switches or jumpers on the 
card. accessory the program has determined the required configuration of the accessory 
cards, it identifies any manual switch settings or changes that may be necessary, 
and instructs the user to make them. The system configuration information is then 
written to nonvolatile memory where it is stored and available to the BIOS (Basic 
I/O System) each time the computer boots up. 

HP contributed heavily to the usability features of the configuration software by 
using a people equipped camera studio in our usability department to observe people 
using the configuration utility. 

Some as windows testing showed that nonprocedural interfaces, such as a windows 
environment, didn't work in the installation process as well as a procedural inter 
face. guide procedural interface presents a series of steps â€” procedures â€” that guide 
the user. A nonprocedural interface simultaneously presents a number of tasks 
from of the user must select the next step.) The initial version of the configura 
tion utility used a windows-like interface. The later versions of the configuration 
utility have changed to use a procedural interface. In addition, help screens have 
been improved, and some of the processes have been combined into a single task. 
We also some the code to make it run faster, eliminating a perception by some 
users that the system was hung up. 

The usability testing continues, and the latest version of the configuration soft 
ware fully a much improved user interface. This new interface is fully procedural, 
and tests have shown that even the most inexperienced users can effectively 
configure an HP Vectra computer. 

More about the configuration files and the EISA slot initialization process can be 
found in the article on page 83. 

Tony Dowden 
Learning Products Engineer 
California PC Division 

connector design. This preserved a healthy competitive 
environment among the connector vendors and allowed 
them to market their individual features and benefits. 

Customer and Vendor Relations 
The existence of the consortium provided the technical 
benefits mentioned above and it also freed HP, Compaq, 
and other consortium members to establish the necessary 
customer and vendor relationships that would eventually 
be necessary to manufacture products. Nondisclosure 
agreements were established between HP and several 
connector manufacturers. This allowed HP to negotiate 
supply contracts and characterize their business needs 
independently of any HP competitors. This provided the 
necessary business and product planning isolation be 
tween HP and all other competitors. 

During the development process it was a challenge to 
document and manage the flow of information between 
all parties. Fig. 2 shows how this was done. Each PC 
manufacturer was able to negotiate a supply of connec 

tors without disclosing volume, pricing, or new product 
schedule to potential competitors. There was no exchange 
of information between connector vendors, and each PC 
vendor had independent access to the connector manufac 
turers. 

EISA Connector Issues 
The key issues surrounding the development of the EISA 
connector were maintaining ISA electrical and mechanical 
compatibility- at a competitive cost, and excellent market 
perception for the final product. 

Compatibility. The compatibility issue meant that the exist 
ing ISA or PC AT boards had to be supported both elec 
trically and mechanically in the new scheme. The new 
scheme also had to support a new EISA board that used 
the EISA 32-bit burst mode bus. These constraints caused 
rejection of solutions that required: 
Increasing the height of the worldwide PC AT product 

â€¢ packages by 0.3 inch 
Investigating how many PC AT plug-in cards worldwide 

â€¢ have components in the 1/8-inch space above the connec 
tor 
Adding the EISA expansion as a separate outrigger or 

â€¢ tandem connector. 

Electrical Performance. The additional EISA signal lines 
were specified by the consortium, including power, 
ground, and spares. This meant adding approximately 90 
pins to those already present on the ISA connector. The 
way in which they were added was important because 
the goal was not only to provide for the additional EISA 
pins, but also to improve the RF performance of the ISA 
section to work with TTL bus logic having typical logic 
transition times of 2 ns. Improving RF performance meant 
that the connector impedance had to match the typical 
multilayer printed circuit board trace impedance of 60 
ohms, and multiple-line switching crosstalk to a victim 
line had to be less than 20% at 2 ns.4 Crosstalk perform 
ance is largely determined by the ratio of the number of 
signal pins to the number of ground pins and the isola 
tion provided by the EISA printed circuit board ground 
plane. Therefore, the EISA connector had to have a lower- 

No Competitive 
Information Flow 

No Competitive 
Information Flow 

Fig. 2. Information flows between PC manufacturers and 
connector manufacturers. The goal here was to enforce confi 
dentiality between the connector manufacturers and each PC 
vendor they worked with. 
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ISA Expansion Board 

â€¢ ISA Contacts 

EISA Contacts 

EISA Connector J  EISA 
- Access 

Keys 

EISA Expansion Board 

Upper-Level Pins 
Lower-Level Pins 

EISA Connector 

Fig. 3. Portions of ISA and EISA expansion boards, showing the 
I/O pins on each board and a cutaway view of the EISA connector. 

signal-to-ground pin ratio than an ISA bus because the 
ISA and EISA signals together form a high-performance 
bus. Ground planes were assumed to be present in the 
motherboard and EISA printed circuit boards, and the 
current capacity of the ISA contacts had to be 3A per 
contact for ISA power pin compatiblity. 

Mechanical Performance and Market Perception. A positive 
public perception was important to the acceptance of the 
new EISA standard. The connector design needed to 
maintain the reference features, seating planes, and inser 
tion force of ISA boards. This was key to the overall me 
chanical design and it also communicated ergonomic 
backward compatibility to the user. For this reason it was 
decided that the EISA connector should have the same 
dimensions as the ISA connector. 

EISA Connector Solution 
The solution that meets all of the objectives is an exten 
sion of an idea used from the very first scheme pro 
posed â€” the double-decker (or bilevel) connector. Instead 
of adding the EISA signals in front of, on the side of, or 
underneath (by increasing the height) of the ISA connec 
tor, the additional signals were added below the level of 
the existing signal pins (see Figs. 3, 4, and 5). Incidental 
ly, this solution was arrived at simultaneously by HP and 
Burndy Corporation. 

At HP this solution evolved from investigating how to add 
grounds to the ISA connector section for use with EISA 
cards. It was determined that the additional grounds 
could be located on a lower level than the ISA contacts. 
Since the ground contacts had to be as reliable as the 
signal contacts, the EISA signals were also located on the 
lower level (see Fig. 3). 

(b) (e) 

Fig. the (a) Cross-sectional view of the upper-level contact of the EISA connector, (b) Cross-sectional view of the lower-level contact of the 
EISA connector, (c) Cross-sectional view of both contact levels. 
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EISA Access Key 

Fig. 5. Inside view of one half 
of an EISA connector. The EISA 
access key prevents ISA boards 
from being inserted to the depth 
of the EISA contacts. 

"The were of the EISA connector sections shown in Figs. 4 and 5 were made from 
connectors manufactured by Burndy Corporation. 

Since this design allows EISA signals (including grounds) 
in the same motherboard space as an ISA system and the 
connector remains the same height, the signal-to-ground 
pin ratio for the ISA signals is effectively reduced to 8:1. 
Improved isolation for the 8.33-MHz BCLK (backplane 
clock) is provided by adjacent RF grounds. Two of the 
ground pins are at BCLK so that the gold finger pads are 
on opposite sides of the printed circuit board. Thus these 
pins can be directly connected to the plug-in board 
ground plane with a low-inductance connection. 

In addition, the internal ground planes of the plug-in 
board under the gold fingers, which play a key role in 
determining overall connector electrical performance, can 
extend almost to the surface of the motherboard. These 
help provide electrical isolation between the two halves 
of the connector, single-line crosstalk between adjacent 
pins of 5% to 7% at 1-ns edge transition times, and a con 
trolled 55-ohm to 65-ohm signal impedance.4 An added 
benefit of the dual-level contact structure is that although 
the number of contacts doubled, the insertion force only 
increased from 28 pounds for the ISA connector to 35 
pounds for the EISA connector. The signal density of 
each level is the same as the ISA connectors (20 per 
inch), thereby minimizing the impact on printed circuit 
board manufacturing requirements. 

Conclusion 
Through a joint effort with other members of the EISA 
consortium, we designed a connector that meets all the 
technical design requirements necessary for industry ac 
ceptance. Given the number of companies and parties 
involved, we achieved an extremely fast development 
cycle of six months from start of this project to the pro 
duction of the first connectors. 
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The HP Vectra 486 Memory Controller 
The memory subsystem architecture and the memory controller in the HP 
Vectra 486 personal computer provide a high-performance burst-mode 
capability. 

by Marilyn J. Lang and Gary W. Lum 

During the investigation phase for the HP Vectra 486 per 
sonal computer, in-house performance tools confirmed 
that the memory system was a key to overall system per 
formance (see article on page 92). Selecting an optimal 
memory and controller architecture for a high-perform 
ance memory subsystem was a major design consider 
ation for the HP Vectra 486 design team. 

While performance was considered important to the suc 
cess of the HP Vectra 486, it was but one of many impor 
tant factors to consider for the memory controller design. 
The PC server market (a target for the HP Vectra 486) 
continues to demand more memory, yet entry level sys 
tems require a small starting memory and incremental 
memory size. There is also an emerging need to simplify 
the installation and configuration of memory by both cus 
tomers and dealers. We were also anticipating future In 
tel486 microprocessor speed upgrades, and wanted a 
memory architecture that could support these upgrades 
with minimal changes. And, of course, we were striving 
to deliver, at a competitive price, a system that included 
the EISA standard. 

From these requirements, the memory controller objec 
tives became the desire to: 
Meet the HP Vectra 486 schedule and cost structure 
Provide competitive performance for 25-MHz systems 
Have a large and logical memory upgrade scheme 
Provide a design for supporting higher-speed Vectra 486 
systems. 

With these objectives, the design team began investigating 
relevant technologies that would help determine the opti 
mal feature set. Three main areas were focused on: the 
Intel486's burst-mode capability, the 4M-bit DRAM, and 
the emerging 36-bit SIMM (single in-line memory module) 
standard for PCs. 

Investigations 
The Intel486, with its on-board 8K-byte cache, uses burst 
mode to fill a cache line from an external memory sys 
tem. Burst mode, long used in larger computer systems 
but new to personal computers, is a more efficient meth 
od of transferring data. Rather than transferring only a 
single piece of data for each address generated, burst 
mode allows multiple pieces of data (typically four 
dwords*) to be transferred for each address. Since subse 
quent addresses need not be generated, fewer cycles are 
required to move information, and bandwidth increases. 

Â«32 bits 

Supporting burst mode, on the other hand, requires more 
complexity than traditional memory or cache controllers. 

Using our available performance tools, the Intel486 burst- 
mode capability was matched with various memory archi 
tectures, ranging from a simple, single-bank memory array 
to a cached, multiple-bank configuration. The single-bank 
memory array was quickly dropped, because it was not a 
competitive solution. The key finding from this analysis 
was that for 25-MHz systems, by using the burst-mode 
capability in the Intel486, a DRAM memory controller 
communicating directly to the Intel486 could compare 
quite favorably with a moderately sized external memory 
cache. This was particularly true for cache controllers 
that only supported burst mode between the Intel486 and 
the cache (or did not support burst mode at all). When 
the cost of the cache was factored in, the interleaved, 
bursting memory controller was the clear preference for 
the Vectra 486. 

The 4M-bit DRAM was scheduled for production about 
the same time the Vectra 486 was to be released. Al 
though the 4M-bit DRAM would provide the highest 
memory density available, it was considerably more costly 
than the IM-bit DRAM, which had been in production for 
several years. Being able to support both densities would 
allow us to exploit both the IM-bit and 4M-bit advantages. 
Standard memory configurations could be built with the 
cost-effective IM-bit DRAMs, while large memory arrays 
could use the 4M-bit. Furthermore, as the 4M-bit DRAM 
progressed down the production cost curve, we could 
move quickly to it when prices became attractive. By 
working closely with some of our key memory vendors, 
we were able to secure prototype and production vol 
umes of 4M-bit DRAMs for the Intel486. 

Previous HP personal computers had used SIMMs, and 
the general feedback from our customers and dealers was 
very positive. A SIMM is a small printed circuit board 
with memory installed on it (typically surface mounted). 
An edge connector on the SIMM allows a customer to 
install it easily into an available connector. The typical 
SIMM organization is nine bits wide (eight data bits and a 
parity bit) and the edge connector has 26 pins. During 
Intel486 development a new SIMM organization was be 
ginning to get attention â€” 36 bits wide with a 72-pin edge 
connector â€” which allows a full dword (32 bits plus par 
ity) to be on a single SIMM. This SIMM also supports 
presence detect, which encodes the size and speed of the 
module on four of the 72 bits, and allows the module 
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characteristics to be read directly from the SIMM. The 
new SIMM was already available in IM-byte and 2M-byte 
densities. Both densities use IM-bit and 256K-bit DRAMs, 
but at the time none used the 4M-bit DRAM. Working 
with our key memory vendors, we were able to establish 
standard 4M-byte and 8M-byte SIMMs. 

From these investigations and other discussions, the In 
tel486 memory controller feature set was denned to in 
clude: 

â€¢ Intel486 burst-mode support 
2M-byte to 64M-byte memory array size 

' Minimum memory upgrade size of 2M-bytes 
â€¢ Support for IM-byte, 2M-byte, 4M-byte, and 8M-byte 
SIMMs 

> Support for shadowing or remapping of 16K-byte memory 
blocks 

â€¢ Full support for EISA devices, including bus masters. 

Since many of the features we wanted to include involved 
new technologies, no commercial memory controllers 
were available that supported our feature set. Further 
more, a short investigation concluded that using an exist 
ing memory controller with additional surrounding logic 
to support the new features would not meet our cost or 
performance goals. We decided that the best design ap 
proach was to develop a new controller using an ASIC to 
implement the memory controller. 

Memory System Architecture 
The memory system is completely contained on a 5.6-inch 
by-13.3-inch memory board, and uses a proprietary con 
nector on the Vectra 486 motherboard. The memory sys 
tem sits directly on the 25-MHz Intel486 bus. 

Allocating board space for the memory controller, the 
DRAM drivers, and other support logic, a maximum of 

eight SIMMs can be accomodated on the board. When 
populated with 8M-byte SIMMs, this allows a maximum 
memory size of 64M bytes. This is four times what pre- 
\ious HP personal computers had supported. 

In burst-mode operations, the Intel486 is capable of ac 
cepting one dword each processor clock cycle. At 25 
MHz, this means an ideal memory system would be able 
to deliver one dword every 40 ns. Since we were using 
80-ns DRAMs, a simple 32-bit memory array was clearly 
not sufficient to meet our performance goals. Two possi 
ble architectures were investigated: a 128-bit-wide 
memory array and a 64-bit-wide memory array. With a 
128-bit memory array, all four dwords would be fetched 
on the initial Intel486 memory access, and one dword 
output on each of the four clock cycles. For the 64-bit 
memory array, two dwords would be fetched using the 
Intel486-generated address, and two more dwords fetched 
using an address generated by the memory controller. The 
additional address generation requires another clock 
cycle, so the 64-bit memory array provides four dwords in 
five clocks, rather than four clocks. Although this was 
slower than ideal, the 64-bit-wide memory system allowed 
a minimum system configuration and upgrade increment 
of 2M bytes, rather than the 4M bytes required in the 
128-bit architecture. We decided the 64-bit-wide memory 
array provided the best overall solution for the Vectra 
486. 

Fig. 1 shows the block diagram of the Vectra 486 memory 
system. The 36-bit SIMMs are organized in pairs, creating 
the 64-bit-wide memory array. SIMMs 1, 3, 5, and 7 con 
tain the lower-order dword, while SIMMs 2, 4, 6, and 8 
contain the higher-order dword. Each SIMM pair must be 
of the same SIMM density, but different density pairs are 
allowed in the memory array. The memory array is fur- 

f lEAD_OE(3:0) 
BRDY# 

WRITE_OE(1:0) 

f  RAS(7 :6 )  
* \ C A S ( 3 1 : 2 8 )  

f  RAS(5 :4 )  
" * \  C A S ( 2 3 : 2 0 )  

L A T C H J A T A  1  
WRITE.OE 1 
BEAO_OE 3 

Fig. 1. The Vectra 486 memory 
subsystem. 
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ther divided into upper and lower memory halves (UP- 
PER_MD and LOWER_MD) to reduce the maximum capaci 
tance on each memory data line. Although this increased 
part count on the board and loading on the system host 
bus, it improved timing margins in the the most critical 
system timing paths. 

Data transceivers are used to move data between the 
Intel486 and the memory array, and sit directly on the 
system host data bus (HOSTDATA(31:0)). Since the 64-bit 
memory system requires two memory accesses for each 
Intel486 burst access, latching data transceivers are used 
to output data from the first fetch while the second 64 
bits are read. 

The generation of memory addresses and control signals 
by the memory controller is complicated by the organiza 
tion of the SIMMs. The IM-byte and 4M-byte SIMMs are 
organized as a single block of memory (or memory bank), 
256K deep by 36 bits wide and 1M deep by 36 bits wide 
respectively. Each memory bank has one row address 
strobe and four column address strobes (one for each 
byte). The 2M-byte and 4M-byte SIMMs, however, are or 
ganized as two banks of memory. The 2M-byte SIMM con 
tains two IM-byte banks, and the 8M-byte SIMM contains 
two 4M-byte banks. These two-bank SIMMs have two .row 
address strobes (one per bank) and four shared column 
address strobes (to select one of four bytes in both 
banks). A SIMM socket can contain either a one-bank or 
a two-bank SIMM. 

To correctly control the one-bank or two-bank SIMMs, the 
memory controller generates row address strobes and 
row addresses to the array based on the memory bank 
configuration. Each SIMM pair contains either one or two 
banks, depending on the SIMM installed. Eight row ad 
dress strobes (RAS(7:0|) are generated directly from the 
memory controller, two for every SIMM pair. For a 2M- 
byte or 8M-byte SIMM the memory controller uses both 
row address strobes. For a IM-byte or 4M-byte SIMM 
only one address strobe is used. The row address appears 
on MA(9:0) when the row address strobe goes active. 

The memory controller also takes advantage of the page 
mode capability of the SIMMs, and keeps the row address 
strobe asserted in each memory bank. If a subsequent 
memory access falls within an active page (has the same 
row address as a previous access to the bank), the much 
faster page mode access is performed. 

The column address strobe and column addresses to the 
array are generated from the four column address strobes 
from the memory controller (SCAS(3:0)), providing one 
strobe per SIMM pair. Because the Intel486 can operate 
on a single byte of data, each byte in the array is made 
individually accessible. Each SIMM has four column ad 
dress strobes, so 32 strobes (CAS(31:0)) are generated for 
the eight SIMMs by combining SCAS(3:0) with eight byte 
enable signals (BE(7:0)). BE(7:0) is also used to generate the 
direction controls (READ_OE and WRITE_OE) and latch signal 
(LATCH_DATA) to the data tranceivers. 

Parity is also handled on a byte basis. Because of 
memory controller pinout and timing, parity generation 
and detection are implemented using PALs and random 
logic. Another PAL is used as a SIMM presence detect 

encoder, which reads four presence detect (PD) bits from 
the first SIMM of each pair and encodes them into six 
SIMIVLCONFIGURATION bits. This encoding specifies several 
different possible memory configurations, including com 
binations of IM-byte and 4M-byte SIMMs, or 2M-byte and 
8M-byte SIMMs. When used with the EISA configuration 
utility, the presence detect capability allows the user to 
configure memory from the screen. 

To accommodate the Intel486's 33-MHz timing (which was 
not available during the design phase of the project), the 
READ_OE signals to the data tranceivers are generated one 
clock early and pipelined through an external registered 
PAL. This scheme ensured that the read path was as fast 
as possible. It also gave us some flexibility in host bus 
timing, in case of changes in CPU timing. 

Memory Controller Architecture 
Fig. 2 shows a block diagram of the Vectra 486 memory 
controller. There are seven major blocks in the memory 
controller. The configuration registers contain address 
range, remap and shadow regions, and other memory con 
figuration information typically set by the BIOS at power- 
on (see the article on page 83). The 8-bit XD bus, a data 
bus available on all PCs, is used to access all memory 
controller registers because fast access is not a high 
priority at power-on time. 

The memory configuration information, along with the 
SIMM configuration information from the presence detect 
pins on each pair of SIMMs, is used by the address block 
to determine if the current memory cycle on the host 
address bus is in the memory controller's address range. 
If it is, the address block will also determine which 
memory bank is selected, whether it is a page hit or miss 
(whether the current row address is the same as an ac 
tive page), and the appropriate DRAM row and column 
addresses (MA(9:0|). 

Memory cycles that appear on the host bus are generated 
either from the CPU or from a backplane device such as 
an EISA bus master. Two independent state machines, the 
CPU state machine and the EISA/ISA/Refresh state ma 
chine, monitor the state of each device. The CPU state 
machine is actually two interlocked state machines. One 
machine monitors the host bus and when it sees a 
memory request, it starts a second state machine. The 
second machine generates the appropriate CPILCYCLE^CNTL 
signals (page hit or miss, dword write, or one, two, or 
four dword read). The CPU state machine is fully syn 
chronous with the Intel486 processor clock. 

The EISA/ISA/Refresh state machine generates control 
signals for all other cycles. This machine supports EISA 
burst read or write cycles, EISA- and ISA-compatible 
DRAM refresh, and all ISA cycles. Because ISA is an 
asynchronous bus, the EISA/ISA/Refresh state machine is 
a semi-synchronous state machine, and uses BCLK (the 
backplane clock), and external delay lines to generate the 
BACKPLANE_CYCLE_CNTL signals. 

The CPU_CYCLE_CNTL and BACKPLANE_CYCLE_CNTL signals are 
generated on every memory cycle. Each set of signals 
includes the DRAM timing relationships that optimize the 
respective CPU or backplane device bus cycle. HLDA (hold 
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acknowledge) is used as the select signal to a multiplexer 
to determine the correct set of signals. Once the correct 
CYCLE_CNTL is selected, the corresponding DRAM control 
signals RAS, CAS, and WE are generated for each bank via 
the DRAM interface block. The byte, word, and dword 
addressability of the memory array is also handled by the 
DRAM interface block, which generates the appropriate 
data transceiver control signals (READ_OE and WRITE_OE). 
For the Vectra 486, all memory reads are 64 bits while 
memory writes can be one byte, one word (two bytes), or 
one dword (four bytes). 

The row address strobe timeout clock is used for DRAM 
timing. The maximum time a page can be open (RAS ac 
tive) is 10 (is. Since it is possible to exceed this limit 
during an EISA burst cycle, continuous page hits, or a 
long Intel486 idle time, it is necessary to monitor the time 
each bank is active. Eight timeout counters, one for each 
bank, monitor the active page time. Counters are enabled 
when the row address strobe is active, reset when the 
row address strobe goes inactive, and clocked by an ex 
ternal 1.16-MHz oscillator. When the timeout limit is 
reached, RASJÃMEOUT is generated. The CPU state ma 
chine and the EISA/ISA/Refresh state machine will then 
finish the current memory cycle and allow the DRAM 
interface block to disable the timed-out DRAM page. In 
some instances it is possible to disable a page without 
incurring any clock penalties because a page hit on one 
bank can be done while turning off a timed-out bank. 

The test block is used to debug and test the memory con 
troller chip. An external test pin puts the memory control 
ler into the test mode. In test mode, external address 
lines are used to select which signals and state machine 
states are put on the internal test bus. The internal test 
bus contents are available via the XD bus. 

Fig. 2. The Vectra 486 memory 
controller. 

Burst Mode Read 
All Intel486 memory requests are initiated by placing the 
memory address on the host address bus, setting appro 
priate control lines (i.e. memory read or write) and strob 
ing ADS#. Fig. 3 shows some of the key timing for a burst- 
mode read cycle for four dwords. One of the control 
lines, BLAST* (burst last) is asserted if the Intel486 re 
quests a burst-mode cycle. If the memory system is inca 
pable of supporting burst mode, it will return a single 
dword and assert RDY# (ready). If the memory system can 
support burst mode, it will assert BRDY# (burst ready) and 
return two or four dwords depending on the type of In 
tel486 request. The Intel486-generated memory address is 
used to fetch the first two dwords, and a second address 
(incremented by two dwords) is generated by the memory 
controller to complete the four-dword burst read. 

Returning a burst-mode request entails several operations 
within the memory system. For simplicity, we assume a 
DRAM page hit (for a page miss, additional cycles are 
required to generate a row address strobe and row ad 
dress). When the Intel486 requests a burst cycle, it will 
output an address for each of the four dwords in the 
burst. These addresses (and respective data) follow a 
particular sequence, depending on the initial address sup 
plied by the Intel486. The memory controller uses only 
the initial address because the subsequent addresses from 
the Intel486 would not meet our system timing. The 
memory controller will latch the initial address and gener 
ate the identical sequence earlier in the burst cycle. 

There are four possible address sequences, determined by 
the state of HOST_ADDRESS(3:2): 
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(Address Strobe) 

H O S T _ A D D R E S S | 3 1 : 0 )  

MA|9C) 
(Memory Address) 

(Column Address 

MD(63:0) 
(Memory Data) 

L A T C H _ D A T A 1  '  

R E A D _ O E  

(Read Output i 
Enable) 

H O S T _ D A T A ( 3 1 : 0 )  

BRDY# 
(Burst Ready) 

# Indicates Active Low 

Fig. 3. The timing relationships 
between the signals involved in 
doing a burst read hit of four 
dwords. 

A d d r e s s  d w o r d  0  d w o r d  1  d w o r d  2  d w o r d  3  
Sequence 

1: 

2: 

3: 

4: 

address 

xx 00 

xx 01 

xx 10 

xx 11 

address 

xx 01 

xx 00 

xx l l  

xx 10 

address 

xx 10 

x x l l  

xx 00 

xx 01 

address 

xx l l  

xx 10 

xx 01 

xx 00 

xx = HOST_ADDRESS(31:4)  

0 0 ,  0 1 ,  1 0 ,  1 1 ,  =  H O S T _ A D D R E S S ( 3 : 2 ) o r  A 3  A 2  

The memory controller will generate the correct address 
sequence by toggling A2 on each dword. The third and 
fourth dwords differ in A3, so the second memory read 
has a column address that differs from the first only in 
one bit. 

To improve burst-mode timing, rather than waiting for 
BLAST* to be asserted (which may come relatively late in 
the cycle), the memory controller assumes every memory 
read is a burst-mode read, and begins generating CAS, 
READ__OE and BRDY# signals. The memory controller will 
return BRDY# with the first dword of every read cycle. The 
memory controller will then use BLAST* (now valid) to 
determine if the request was for a burst read. If it was 
not, a RDY# will be generated, the second dword read ig 
nored, and the cycle terminated. If it is a burst read, then 
CAS is precharged in preparation for a second memory 
read, the first and second dwords are latched in the data 
transceivers, and the second dword is output. BRDY# is 
returned for the second dword on the next clock cycle, at 
which time the second memory read begins and the first 
data latch is opened to receive data for the third dword. 

One clock later, both data latches are open, and the third 
and fourth dwords are put on the host data bus in con 
secutive clock cycles. The memory controller completes 
the burst-mode read by generating a SERDYO# (shared early 
ready) signal. This signal is input to a logic block in the 
Vectra 486 memory subsystem which forms the RDY# sig 
nal to the Intel486 (see Fig. 1). In the Intel486 a burst 
mode read cannot be prematurely terminated, so once a 
burst sequence has started, all four dwords must be read. 

Conclusion 
The memory controller design began at the same time as 
the HP Vectra 486 SPU (system processing unit), and re 
mained the critical path component for most of the devel 
opment schedule. The project team successfully met the 
HP Vectra 486 schedule objective by delivering a fully 
functional first-pass memory controller chip. This chip 
revision was used for the HP Vectra 486/25T production 
until introduction of the HP Vectra 486/33T memory con 
troller version. Fig. 4 shows one of the memory bench- 

System External Cache Size 
V e c t r a  4 8 6  V e n d o r  A  V e n d o r  8  V e n d o r  C  

None 128K-Byte Cache 64K-Byte Cache128K-Byte Cache 

Fig. 4. Memory benchmarks run on the Vectra 486 and other 
cached Intel486 25-MHz machines. 
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marks run on the HP Yectra 486 and other cached 
25-MHz Intel486-based machines. 
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The HP Vectra 486 Basic I/O System 
An Intel486 processor, the EISA bus standard, and a new memory 
subsystem all required enhancements to the Basic I/O System to ensure 
that the HP Vectra 486 made the best possible use of these new features. 

by Viswanathan S. Narayanan, Thomas Tom, Irvin R. Jones Jr., Philip Garcia, and Christophe Grosthor 

The Basic I/O System (BIOS) is the lowest-level software 
interface between the hardware and the operating system 
in the HP Vectra 486 personal computer. The BIOS con 
sists of a power-on self-test and function support for the 
DOS operating system. The power-on self-test performs 
testing and initialization of the various components of the 
system and loads the operating system. The rest of the 
BIOS supports functions to access the various DOS de 
vices. This article describes the development process and 
the features incorporated into the HP Vectra 486 BIOS to 
support the Intel486 microprocessor and the Extended 
Industry Standard Architecture (EISA). 

BIOS Source Base 
The Vectra 486 BIOS code was heavily leveraged from the 
source code of the Vectra ES, RS, and QS personal com 
puter series, which support the HP-HIL (human interface 
link) BIOS extensions (EXBIOS). The EXBIOS support 
was stripped off and support for EISA, the micro-DIN 

mouse, and other enhancements were added to create the 
Vectra 486 BIOS (see Fig. 1). 

To maximize BIOS leverage for future systems, team 
members focused on keeping a large part of the new 
source files reusable. A common collection of reusable 
software modules ensures a more compatible and easily 
upgradable software system. This commonality ensures 
that during development, potential compatibility problems 
only have to be addressed once, and when a compatibility 
problem in a released product is fixed in a common rou 
tine, the fix is done once and automatically goes into all 
subsequent software releases. 

The BIOS development of code was shared between the 
engineers at HP's California Personal Computer Division 
in Sunnyvale, California and HP's Grenoble Personal Com 
puter Division in France. The configuration for transfer 
ring files back and forth between the two groups is 

Vectra ES (80286) 

Vectra RS and QS (Intel386) 

Vectra RS C 
(Intel386 with cache) 

Vectra OS'S 

Micro-DIN Base 
EXBIOS HP-HIL Base 

Fig. 1. HP Vectra BIOS source 
code bases. 
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California PC Division 
Site Backbone HP Internet 

Grenoble PC Division 
Site Backbone 

'ectra 486 BIOS 
Team LAN 

BIOS Architecture 
Team LAN 

H P  O f f i c e S h a r e  I  V e r s i o n  ^ H  H P  O f f i c e S h a r e  V e r s i o n  
Server Software Control System â€¢â€¢ Server Software Control System 

GPCD BIOS 
Team LAN 

HP Off iceShare Version 
Server Software Control System 

V e c t r a  4 8 6  B I O S  f e  
Eng inee r ' s  PC u  

BIOS HP OfficeShare 
Server 

C: = Local  Dr ive 
S:  = Volume on Server  

Indicates a Virtual Link to Server 

shown in Fig. 2. This code sharing created issues related 
to ensuring file security and tracking changes to the code. 
For this reason the BIOS source base is managed by a 
software revision control system. The source files are 
structured into common and machine-specific directories. 
The machine-specific files contain code that handles the 
initialization requirements of different chip sets and differ 
ent processors and processor speeds. EISA and ISA dif 
ferences are also handled by the code in these files. 

EISA Initialization 
One of the most important features of the EISA architec 
ture is its ability to detect the I/O expansion boards in 
serted in the system's motherboard slots. The configura 
tion utility easy config generates information for each EISA 
or ISA card installed in a system expansion card slot. 
When the user is satisfied with the system configuration 
with either the defaults presented by easy config or after 
making any desired changes, the configuration is stored 
in nonviolate RAM. 

The configuration files for each board contain function 
data structures for each slot that provide information on 
the DMA initialization, IRQ (interrupt request) trigger, 
memory information, and I/O initialization, easy config re 
solves I/O initialization, memory conflicts, and identifica 
tion for the individual expansion boards in each slot. 

EISA Configuration Support 
Support for storage and retrieval of EISA configuration 
information is provided by 8K bytes of nonvolatile RAM 
and by system BIOS support routines. The EISA configu 
ration utility easy config uses these routines to clear non 
volatile RAM, store EISA configuration information (on a 
slot-by-slot basis), and retrieve information for all func 
tions of a slot (brief format) or for one function (detailed 
format). Fig. 3 shows some of the processes involved in 
retrieving data from or storing data to the nonvolatile 
RAM containing configuration data. 

The system BIOS power-on software also retrieves the 
configuration data to initialize the hardware in each slot. 
After the system boots, other system drivers, utilities, or 
the operating system may also store and/or retrieve con 
figuration data (or any other data) from nonvolatile RAM. 

GPCDBiOS 
Engineer's PC 

Fig. 2. Communication network 
between the BIOS engineers in 
California and the BIOS engineers 
in Grenoble, France. 

To accommodate various operating environments the 
BIOS routines that interface to the nonvolatile RAM can 
operate in the Intel486's real or protected modes. In real 
mode, 16-bit segments and offsets are used to address a 
IM-byte address space. In protected mode, segment regis 
ters become selectors into descriptor tables which with 
offsets allow for 16-bit to 32-bit addressing (up to 4 giga 
bytes). 

To save space, input data is compressed by the caller 
before it is stored in nonvolatile RAM by the BIOS rou 
tines. When configuration data is retrieved from memory 
it is expanded by the BIOS routines before being passed 
to the caller. Expanding the output data involves padding 
variable-length data fields and blocks into fixed lengths. 
Slot configuration data consists of a variable number of 
variable-length function blocks that describe each function 
of a card in an EISA or ISA slot. The function blocks 
consist of fixed and variable-length fields and variable 
repetitions of fixed and variable-length subfields. These 
fields consist of descriptive text information and memory, 
interrupt, DMA, and I/O resource and configuration data. 
Free-form data can also be stored in some of these fields. 
The slot configuration data is stored sequentially by slot 

C o n f i g u r a t i o n  I  8 K  B y t e s  o f  
D a t a  I  N o n v o l a t i l e  R A M  

Fig. 3. Storing and retrieving configuration data to and from 
the nonvolatile RAM. Data is compressed when it is placed in 
memory and expanded when it is retrieved. 
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number (including empty slots) until the last physical or 
virtual slot is reached. The minimum size of a slot's con 
figuration data is zero (empty) and the maximum size can 
be as long as the remaining available space in nonvolatile 
RAM. 

To access nonvolatile RAM data efficiently (in terms of 
speed and space), a table approach is used. A table of 
pointers that point to slot configuration data blocks is 
allocated dynamically and grows inward from one end of 
the nonvolatile RAM. The data space for slot configura 
tion blocks is also allocated dynamically and also grows 
inward but from the opposite end of nonvolatile RAM 
(see Fig. 4). When the pointer table and data space meet, 
the nonvolatile RAM is full. This technique saves memory 
space and allows for a single look-up to reach any data 
block. 

Power-on Initialization 
When the system is rebooted the BIOS initializes one 
EISA or ISA slot at a time and one function at a time 
using the configuration information stored in nonvolatile 
RAM. The initialization proceeds in two steps; error 
checking is performed first and then the slot is initialized. 

Error Checking. The system ROM BIOS begins the initial 
ization only if the nonvolatile memory's checksum is 
good. The BIOS also has to check whether the correct 
card is installed in the right slot before it initializes the 
card in that slot. The BIOS checks for the following com 
binations in each slot. 

â€¢ A slot could be defined as empty according to the config 
uration data, but the user may have plugged a card into 
the slot. 

â€¢ A slot could be defined to have a particular identifier ac 
cording to the configuration data but may be read as 
empty. 

â€¢ A slot could be defined to have no readable identifier ac 
cording to the configuration data but BIOS reads an iden 
tifier from the slot. 

â€¢ An identifier read from the slot may not agree with the 
identifier in the configuration data. 

Nonvolatile RAM ( 

 C o n f i g u r a t i o n  
'  Da ta  

Pointers 

Fig. in ( )rganix.ation of pointers and slot configuration data in 
nonvolatile RAM. 

An identifier for a slot is checked by reading certain slot- 
specific I/O ports as defined by the EISA specifications. 
After verifying that the slot that needs to be initialized 
has the correct card in it, the BIOS start the initialization 
for that slot. Fig. 5 shows the error checking process 
performed by the BIOS during initialization. 

Slot Initialization. As in error checking, slot initialization 
data comes from the configuration data in nonvolatile 
memory. The configuration data for a slot is retrieved as 
a block of data, and there could be many blocks of data 
for a particular slot. Fig. 6 shows the flow for slot initial 
ization. 

Slot initialization starts with the BIOS code reading a 
block of data from nonvolatile memory for a particular 
slot. It checks to see if there are any DMA initializations 
for that slot. If DMA is not shared, then the BIOS initial 
izes the extended DMA registers defined for that slot. 
Next the code checks to see if the slot has any IRQs that 
need to be set as edge- or level-triggered. It then sets up 
the cache map for noncacheable regions as defined for 
that slot. The code then continues with the I/O initializa 
tions if any. Once this sequence is complete the code 
continues with the next function for the slot until all the 
functions are completed for that slot. 

The BIOS provides a feature that allows the user to make 
blocks of memory cacheable or not. This is very useful 
for boards that have memory-mapped I/O. The BIOS 
builds a cache map in which each bit defines the cache 
on/off state of a particular segment (each segment is 64K 
bytes). A function in the configuration information for a 
slot can define the start address of the memory and the 
length of memory for which caching needs to be turned 
on or off. The BIOS initially sets all segments' caching to 
be on. It then checks for segments of memory for which 
the caching needs to be turned off and then turns caching 
off for the segments that are within the memory length 
specified. The cache map is updated and is later used in 
the boot process to initialize a 64K-bit static RAM, which 
the hardware uses in its cache on/off logic. Each bit of 
the static RAM represents a segment, allowing 64K seg 
ments (or four gigabytes) to be represented (see Fig. 7). 

The BIOS then initializes the various I/O ports as defined 
in the configuration data. The I/O can be 8-bit, 16-bit, or 
32-bit reads or writes. The configuration data also defines 
the mask for the particular I/O port. Thus, the I/O port is 
read, the data is masked (ANDed) with the mask value, 
ORed with the bits that need to be set, and written back 
to the I/O port. 

Finally the BIOS enables the board in the initialized slot. 
Any time the initialization fails, the BIOS makes sure that 
the system can boot from a flexible disk and that the 
video is initialized correctly. This is done so that the ma 
chine is in a minimum working state so that the user can 
execute easy config and reconfigure the system. 

Variable Speed Control 
For backwards compatibility, it is sometimes necessary to 
reduce the speed of the PC. This is particularly true for 
copy-protected software applications that are speed sensi- 
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Read Board 
Identifier Ports 

Read Board 
Identifier Ports 

Report Configuration 
Error and Abort 

Initialization 

Read Configuration 
Information for 

Current Slot 

Does the 
Board Have a 

Readable 
Identifier? 

Slot Is Really 
Empty. Go to Next Slot 

0  0  
Fig. 5. Error checking during power-on initialization. 

tive. The Vectra 486 can reduce its speed for all opera 
tions, or only for flexible disk operations. The system 
BIOS is responsible for this control. To change speeds the 
BIOS programs the duty cycle of a square wave generated 
by a hardware tuner which modulates the Spd_Hold_Req 
(hold request) input of the microprocessor (see Fig. 8a). 

If the microprocessor did not have an internal cache then 
it would effectively be idle while it relinquishes the bus 
during a hold request. Its effective speed would thereby 
be reduced by the modulation factor. Since the Intel486 
has an internal cache it will continue execution, even 

when in a Hold state, until a cache miss occurs, when it 
must wait for the bus. Therefore, to control the micropro 
cessor's effective speed accurately when it is reduced 
from its maximum (unmodulated) value, it is necessary to 
disable and flush the processor's internal cache. With its 
internal cache empty, the processor will halt execution 
(because of cache misses) until the modulated 
Spd_Hold_Req signal is deasserted. The BIOS programs an 
I/O port which disables and flushes the internal cache via 
the Intel486 control lines. This avoids having to use the 
Intel486 control registers to disable the cache. These con- 
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Set IRQ lor Edge 
or Level Triggering 

Does 
Slot Have Any' 

Memory that Does 
not Need to 
Be Cached? - 

Yes 

Set Cache Map to Indicate 
Regions that Are not Cached 

Does 
Slot Have 
Any I/O 

Yes 

There a Mask 
for I/O 

Mask I/O Port Data with 
Configuration Mask Value 

Initialize Port and 
Continue with Next Function 

Fig. 6. Flow for slot initialization. 

trol registers could be in use by other software applica 
tions and might be disrupted by the actions of the BIOS. 

If the speed is restored, or after a flexible disk access 
when at autospeed the BIOS reprograms the cache con 
trol I/O port and the duty cycle of the square wave (see 
Fig. 8b). Therefore, the control state of the cache is main 
tained after resumption of maximum speed without inter 
fering with resources (Intel486 control registers) that ap 
plications may depend upon. 

Micro-DIN and Security Features 
The input system consists of three components: the input 
devices, BIOS functions, and the Intel 8042 keyboard con 
troller. The 8042 keyboard controller communicates with 

"At autospeed the system operates at its highest speed unmodulated and switches to an 
effective speed of8 HHz (modulated only when it is accessing a flexible disk. 

the keyboard and an auxilian- device in a bidirectional, 
serial format with a synchronized clock generated by the 
input device. The auxiliary device may be any type of 
serial input device compatible with the 8042 keyboard 
controller interface. Some of these are: mouse, touchpad, 
trackball, and keyboard. 

The 8042 keyboard controller receives the serial data, 
checks the parity, translates keyboard scan codes (if re 
quested), and presents the data to the system as a byte 
of data. It also provides a password security mechanism 
to support the network server mode and application soft 
ware. 

Additional security features of the Vectra 486 PC are the 
power-on password and the mechanical keylock. Both 
schemes are designed to prevent unauthorized access to 
the PC. The BIOS provides the software to support the 
power-on password feature whenever the Vectra 486 is 
powered on. 

The password function can be configured via the easy 
config utility to request a password either when the PC is 
powered on, or only when a user needs to use the input 
devices. If the PC is configured to request a password, 
the BIOS will display a graphical key symbol to prompt 
the user for the password. If the user types in the correct 
password, the PC will continue with its initialization. 
Otherwise, the BIOS allows three attempts for the user to 
type in the password before halting the CPU. If the user 
knows the correct password, the BIOS will allow the user 
to change or delete the password during the power-on 
sequence. 

When the password is set up to allow limited access, 
which is also known as the network server mode, all mi- 
cro-DIN input devices are disabled via the 8042. A PC 
configured as an unattended file server would typically 
install the password in the network server mode. In the 
network server mode, if the BIOS detects a diskette in 
drive A, it will prompt the user for the installed password 

Cache Map 

1 = Segment Cacheabillty Off 
0 = Segment Cacheability On 

Fig. 7. Cache mapping scheme. 
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System Refresh 
Clock 
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(1) Microprocessor Runs at 25 MHz 100% of the Time 
(2) Microprocessor Runs at 25 MHz X% of the Time 
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Spd_Hold_Req 

BIOS Changes Speed 
to Effective 8 MHz 
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Flexible Disk Access 
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Flexible Disk 
Access Ends 

BIOS Changes Speed 
Back to 25 MHz and 

Cache Enabled 

Fig. 8. Timing relationships in 
volved in speed control, (a) For 
fixed speeds, (b) For autospeed. 

because an unauthorized user may be trying to gain ac 
cess to the PC via a bootable diskette. 

The mechanical keylock, used for locking the input de 
vices, can be used in conjunction with the power-on pass 
word to provide maximum security. If the keylock is in 
the locked position and the password function is installed 
to request the password at power-on, then the user will 
have to unlock the keylock before typing the password. 
But if the password function is installed in the network 
server mode, the keylock doesn't have to be unlocked to 
type in the password until a user needs to use the input 
devices. 

Since the user may occasionally forget the installed pass 
word, the BIOS supports a DIP switch within the Vectra 
486 that disables the password. The BIOS uses this 
switch to allow the user to erase the password without 
any knowledge of the installed password. This switch is 
also used to forbid the installation of a password by an 
unauthorized user. To access the switch, the user must 
unlock a mechanical keylock to open the PC. 

Shadowing and Remapping 
The system memory of a Vectra 486 is partitioned into 
three areas: base memory, reserved memory, and ex 
tended memory. The base memory is within the physical 
address range from 0 to 640K bytes. The reserved address 

100000 

FOOOO 

EOOOO 

DOOOO 

C8000 

COOOO 

BOOOO 

AOOOO 

System 
ROM BIOS 
On-Board 

Option ROMs 
I/O Adapters 

and 
Memory 
Drivers 

Video ROM 
BIOS 

Video Display 
Area and 

Video RAM 

Fig. 9. Reserved memory organization. 

space is within the physical address range from 640 bytes 
to 1M bytes. Lastly, the extended memory area is all 
memory above 1M bytes. This memory architecture is 
known as the PC AT system memory architecture. 

Most software applications typically use the base area 
and some use the extended memory area. The reserved 
memory is set aside for special system functions and is 
generally not available for typical software application 
use. The reserved memory is organized to support the 
main functional components of a microcomputer (see Fig. 
9). The video display area and the video RAM can occupy 
the lowest portion of the reserved address space, AOOOO 
to BFFFF. The video ROM BIOS can begin at COOOO and 
typically ends at C7FFF. The address space that begins at 
C8000 and ends at DFFFF is reserved for special I/O 
adapters and memory drivers. EOOOO to EFFFF is used 
for onboard option ROMs or backplane I/O ROMs (lo 
cated in the I/O slots for ISA or EISA cards). FOOOO to 
FFFFF is reserved for the Basic Input/Ouput System (sys 
tem ROM BIOS). 

Since the introduction of this architecture, the cost of 
memory devices has declined while the density and speed 
of the components have increased. Processor speeds have 
increased far beyond the speed that any programmable 
read-only memory device can effectively support. With the 
advent of 32-bit bus architectures, systems can physically 
address four gigabytes of memory, which can be used to 
support larger, more complex software applications. 

Better system performance can be obtained with efficient 
management of the reserved memory. The Vectra 486 
makes use of two memory management schemes: ROM 
BIOS shadowing and memory remapping. ROM BIOS 
shadowing is a method used to speed up ROM memory 
access so that portions of reserved memory that are fre 
quently used can be accessed as quickly as possible. 
Memory remapping permits unused reserved memory to 
be used as extended memory. 

Shadowing. BIOS and video ROM BIOS routines and data 
are stored in EPROM (electrically programmable read 
only memory). This type of memory is considerably slow 
er than dynamic random access memory (DRAM). Since 
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the BIOS and video ROM routines are frequently used by 
the system, contents of the ROM BIOS and \1deo ROM 
are copied into memory having a faster access time. This 
technique is known as shadowing. 

The conventional organization of the reserved address 
space, in Fig. 9, shows the locations of the system RAM 
and BIOS ROMs. In the Vectra 486. as in other microcom 
puting systems, the conventional organization of reserved 
memory is enhanced to accommodate some additional 
system RAM which is located at the same address loca 
tions as the system BIOS and video ROMs (see Fig. 10). 
This memory is called shadow RAM. Another advantage 
of shadowing is that memory fetches for the Intel486 can 
be accomplished four times faster because the EPROM is 
an 8-bit device and system DRAM consists of 32-bit de 
vices. 

The conventional approach to shadowing is to copy the 
contents of the system ROM BIOS and video ROM BIOS 
to some temporary location. The ROM is then disabled 
and the shadow RAM is enabled. THE BIOS information, 
which currently resides in the temporary storage area, is 
copied into the shadow memory at the same memory 
address locations from which the information was origi 
nally retrieved. Following the shadowing process, any 
data that was originally in ROM will be accessed from 
the corresponding location in the faster shadow RAM. 
This approach requires that the state variables of the 
memory controller indicate whether the ROM or the shad 
ow RAM is being accessed and if write access to the 
shadow memory is permitted. These state variables pre 
vent data corruption by ensuring that either the ROM or 
the shadow RAM is enabled at any time, but not both, 
and that, once copied, the contents of the shadow 
memory cannot be inadvertently overwritten. 

The disadvantage of the conventional shadowing method 
is that system memory control states are wasted. The 
Vectra 486 overcomes this problem by eliminating the 
ROM and shadow RAM enable variable. The write protect 
and shadow RAM enable variables are combined into a 
single state variable. On power-up, the default state of the 
system will read BIOS (system and video ROM) data from 
ROM and write this data to the BIOS address space in 
the shadow RAM. Whenever the shadow RAM is enabled, 
data read from the BIOS address space will be read from 
the shadow memory and all write operations to addresses 
within the BIOS address space are ignored. The shadow 
ing method used in the Vectra 486 system results in a 
tremendous savings of hardware and valuable system 
ROM BIOS code space. The additional step of copying 
BIOS data is eliminated since data can be copied directly 
from ROM into the shadow RAM. 

Remapping. It is often the case that following completion 
of the shadowing process, portions of the RAM in the 
reserved memory area are not used. Since typical soft 
ware applications are not designed to be able to access 
reserved memory for general storage purposes, the free 
portions of reserved RAM remain unused. A software ap 
plication can directly access reserved memory, but with 
out prior knowledge of the configuration of the system, 
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Fig. 10. Shadow RAM. 

the application could unknowingly cause a device to mal 
function by corrupting sensitive data. One approach to 
this problem is to incorporate an expanded memory man 
ager into the system configuration. An expanded memory 
manager manages the free reserved memory by allowing 
the application to use the space as additional base 
memory, and makes the system appear as if the amount 
of base memory has been expanded. The disadvantage of 
using an expanded memory driver is that it is used during 
run time. This mode of operation degrades system perfor 
mance. The expanded memory manager also requires 
memory space for storage of the software routines, there 
by leaving less memory for the application to use. 

Another conventional method is to remap portions of re 
served memory to the top of the physical address space 
of the system. The disadvantage of this method is that 
the memory location to which the free memory is moved 
sometimes does not border on existing memory locations 
and results in creating a noncontiguous memory structure. 
Most applications cannot make use of fragmented 
memory. Also, the conventional remapping scheme is a 
machine-specific feature, and therefore, all software ap 
plications must be customized to take advantage of the 
remapped memory. 

The Vectra 486 solution to memory remapping uses the 
system configuration information in nonvolatile RAM to 
instruct the memory controller how to organize the sys 
tem memory. As an EISA machine, the Vectra 486 has an 
autoconfiguration program which identifies system compo 
nents and allocates system resources to obtain maximal 
system performance. 

Memory remapping in the Vectra 486 is a two-step pro 
cess. The first step is to find the largest contiguous 
chunk of free reserved memory that can be remapped. 
The video RAM space (AOOOO to BFFFF) is generally not 
used because the video cards and the embedded subsys 
tems are currently made with their own RAM. On-board 
option ROMs, which physically reside at EOOOO to EFFFF, 
are rarely used, and the video BIOS address space, COOOO 
to C8000, fragments the reserved memory area. The way 
to create the largest contiguous section for reserved 
memory is to shadow the video BIOS in shadow memory 
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at EOOOO, provided that the system does not contain on 
board option ROMs and if I/O considerations of the video 
BIOS support portability. This paradigm creates a 256K- 
byte (AOOOO to DFFFF) chunk of memory that can be 
remapped (see Fig. 11). The 32K-byte portion between 
E8000 and EFFFF is unused. The system memory control 
ler is told what area of reserved memory is to be re 
mapped. It must also be noted that systems that use the 
DOS shell rely heavily on the system BIOS and video 
BIOS routines, so maximally, only 256K bytes of memory 
is available for remapping. Systems that use OS/2 and the 
UNIX operating system can maximally remap all of re 
served memory because these operating systems replace 
system BIOS and video BIOS and supply all of their own 
drivers. 

The second step in the remapping process is to determine 
where the physical existence of memory ends. The sys 
tem BIOS knows this information following the system 
memory test procedure during the system power-on self- 
test. This address is passed to the system memory con 
troller. Following the first step, the memory controller has 
the necessary information for memory remapping. The 
system memory controller then does the proper address 
translation. 

BIOS shadowing and reserved memory remapping are 
powerful system features that enhance system perfor 
mance and make better use of system resources. BIOS 
shadowing is a common feature among all machines cur 
rently on the market. Its primary advantage is to bring 
more parity between processor speed and ROM access 
times. To implement this functionality in an efficient man- 

"UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other 
countries. 
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ner saves hardware and code space which translates into 
a cost savings to the customer. 

System Memory Initialization 
Finite state machines implemented in software can be a 
very powerful tool. For a system's BIOS, a software finite 
state machine is ideal for component test situations in 
which scratchpad memory is not available. This technique 
is used in testing the system memory configuration in the 
Vectra 486. 

The memory subsystem of the Vectra 486 is a two-way 
interleaved, linear memory architecture. The system 
memory board has four memory banks. Each bank can 
hold two memory modules. The two memory modules are 
two-way word interleaved. The banks of memory are or 
ganized in a linear fashion. See the article on page 78 for 
more information about the Vectra 486 memory subsys 
tem. 

The memory modules are packaged in single in-line 
memory modules and come in IM-byte, 2M-byte, 4M-byte, 
and 8M-byte varieties. The IM-byte and 4M-byte modules 
are single-density modules. The 2M-byte and 8M-byte 
modules are double-density modules. Each memory bank 
on the system memory board must contain a pair of 
memory modules that are the same size and have the 
same density type. Moreover, density restrictions require 
that all memory banks contain memory modules of the 
same density type. The linear structure of the memory 
subsystem requires that the amount of memory in a bank 
be less than or equal to the amount of memory in a bank 
that logically precedes it. The exception to this rule is the 
first bank because no other memory bank precedes it. 

Before system memory can be tested, the memory subsys 
tem configuration must be verified. The power-on self-test 
procedure in the system BIOS is responsible for this task. 
The use of system resources must be kept to a minimum 
because system memory is not available at this stage in 
the system power-on initialization process. A software 
finite state machine is ideal in this situation, since only 
the registers within the processor are available. The finite 
state control is guided by the memory module identifica 
tion encoding (each memory module has information en 
coded within it that specifies the size and density type of 
the module). The memory state machine evaluates the 
identification for each memory bank and verifies that the 
current memory configuration (linearity, uniform bank 
densities, etc.) is valid. 

The software finite state method is very effective when 
considering that each of the four banks can have one of 
five types of memory modules. The number of possible 
memory configurations is 45, or 1024 possible configura 
tions. Of the 1024 possible configurations, 28 are valid. If 
module density errors are found first, then the linearity 
check can be done with a software finite state machine 
with four states. Fig. 12 shows the finite state machine 
for testing the Vectra 486 memory configuration. 

Fig. 11. Remapping. 
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State Machine Inputs 
SIMM Presence Detect Bit = Â¡1â€” SIMM Present. 0 â€”SIMM Not Present! 
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X = Don't Care 

Fig. 12. The finite state machine for Vectra 486 memory con 
figuration testing. 

Defect Tracking 
Because BIOS source code was shared among indepen 
dently managed projects in different locations, BIOS prob 
lems had to be tracked not only for the Vectra 486 prod 
uct but also for several other HP personal computer 
products as will. 

To keep track of prerelease problems across the various 
projects and to provide a means of collecting more global 
process improvement metrics, a custom dBASE IVÂ® ap 
plication was written for use by all of the BIOS teams. 
Problems reported on the Vectra 486 were sent by testers 
to a special electronic mail account to be entered into 
the database. The use of a standard problem form al 
lowed the collection of valuable statistical as well as 
problem-specific information. Information about BIOS 
problems in common files was shared directly with each 
team by exchanging database files. The flexibility of the 
PC database application allowed each team to adapt the 
database application to their needs without affecting the 
ability to share data. This was important, because several 
BIOS teams could have been involved in resolving any 
one problem. 

As each problem was investigated and resolved, status 
information was entered into the database. Detailed in 
formation, such as which code module contained the 
problem and when the problem was introduced, was 
readily available. The typical weekly status report con- 

"DBASE IV is a registered U.S. trademark of Ashton-Tate Corp. 

tained a simple summary of the active problems, the 
problem owners, and their current status. One BIOS team 
member acted as the bug manager and helped keep ev 
en-one informed of the progress being made to resolve a 
problem. 

BIOS Qualification and Test 
The BIOS qualification effort for the Vectra 486 project 
was an improvement over previous BIOS development 
efforts. Because of major revisions to the BIOS in the 
Vectra 486 and the need to produce quality software in 
minimum time, a special BIOS qualification team was 
formed. This team consisted of four engineers and a soft 
ware technician whose main job was to verify that the 
BIOS specifications were correct. In the past, the job of 
qualification of the BIOS was left up to the developer of 
the BIOS code. For the Vectra 486, it was felt that qualifi 
cation would be more thorough if the persons developing 
and executing the tests were not the individuals develop 
ing the BIOS code. 

To make best use of our limited resources, two types of 
test strategies were developed: white box and black box 
testing. Black box testing used a high-level language pro 
gram, such as C, to verify the functionality and quality of 
the BIOS. The C functions invoked DOS functions, BIOS 
functions, and I/O registers to test the BIOS. This was the 
standard method of testing most programs. However, 
when testing the BIOS, we did not always have the 
luxury of relying on an operating system such as DOS 
because much of the BIOS functionality had to be tested 
during the machine initialization, and was inaccessible to 
high-level programs. 

An alternate method was developed using some new ap 
proaches and working with special development tools to 
perform white box testing. New features such as EISA 
initialization, memory initialization, and shadowing rou 
tines were tested using this approach. This method forced 
two engineers to read and understand the actual code: 
the original designer and the one developing the test. This 
task alone required an in-depth understanding of the BIOS 
modules on an instruction-by-instruction basis. The con 
cept of having two people intimately understand each 
module is not new, but typically resource limitations 
make such an arrangement a luxury. 

There were many advantages to this type of testing. For 
one thing, it allowed us to simulate some of the system 
errors. For example, if the user had an invalid memory 
configuration, this error could be simulated without even 
changing the memory inside the computer. Furthermore, 
all the valid memory configuration could be tested via 
this program. There were well over 1000 memory configu 
rations that could be tested through one automated pro 
gram. Normally, this process would involve a technician 
physically changing the configuration each time. Another 
advantage was that the BIOS could be tested without the 
hardware. This proved to be very helpful since the BIOS 
was being developed before the hardware was available. 
With this method, two tasks could be done concurrently. 
Once the hardware was available, the tests could also be 
executed on the hardware. 
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The test strategy that was developed by the BIOS qualifi 
cation team enabled the team to perform tests on the 
BIOS that would normally not have been done. Once the 
tests were developed, they could be added to the test 
suite for regression testing and other BIOS related tests. 

Conclusion 
The HP Vectra 486 BIOS development effort was a major 
milestone in HP's Personal Computer Groups software 
development history from the perspective of both new PC 
technology advances supported and new processes 
introduced. Support for new technologies and features 
like the EISA architecture and an advanced memory con 
troller was incorporated into BIOS with high quality while 
meeting system schedules. 

New or enhanced processes with their associated tools 
were incorporated to meet customer needs and HP busi 
ness requirements. A customized source version control 
process and tools allowed efficient, multi-site, simulta 

neous PC BIOS development with maximum code reuse. 
Brand new defect tracking and component qualification 
processes and tools allowed quality BIOS development 
concurrent with PC hardware development. 
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Performance Analysis of Personal 
Computer Workstations 
The ability to analyze the performance of personal computers via 
noninvasive monitoring and simulation allows designers to make critical 
design trade-offs before committing to hardware. 

by David W. Blevins, Christopher A. Bartholomew, and John D. Graf 

Today's high-performance personal computers are being 
used as file servers, engineering workstations, and busi 
ness transaction processors, areas previously dominated 
by large, costly mainframes or minicomputers. In this 
market, performance is of paramount importance in dif 
ferentiating one product from another. Our objective at 
HP's Personal Computer Group's performance analysis 
laboratory is to ensure that performance is designed into 
HP's offering of personal computers. To achieve this, anal 
ysis of a personal computer's subsystem workloads and 
predictive system modeling can be used to identify bottle 
necks and make architectural design decisions. This ar 
ticle describes the tools and methodologies used by HP 
engineers to accomplish performance analysis for person 
al computers. 

The toolset currently being used at the performance anal 
ysis laboratory consists of specialized hardware and soft 
ware. Typically, the hardware gathers data from a system 
under test and then the data is postprocessed by the soft 
ware to create reports (see Fig. 1). This data can also be 

used to drive software models of personal computer sub 
systems. 

Hardware-Based Tools 

The two hardware-based performance analysis tools 
shown in Fig. 1 are the processor activity monitor 
(PMON) and the backplane I/O activity monitor (BIO- 
MON). Both tools are noninvasive in that they collect 
data without interfering with the normal activity of the 
system under test. 

Processor Activity Monitor 
The processor activity monitor is a hardware device that 
monitors a personal computer's microprocessor to track 
low-level CPU activity. The PMON is sandwiched between 
the computer's CPU and the CPU socket (see Fig. 2). The 
PMON monitors the processor's address and control pins. 
For each CPU operation, the PMON will track the dura- 
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Fig. 1. The hardware-based 
performance analysis tools 
PMON and BIOMON connected 
to the system under test. 

tion and address of the operation and output the results 
to the data capture device. 

Gathering statistics on the activities of a personal com 
puter's microprocessor can be very useful in making de 
sign decisions about the arrangement of the support cir 
cuitry (e.g., cache and main memory, I/O bus interface, 
and bus lines). In addition, trace files that detail the 
CPU's requests to the memory system can be used to 
drive software simulations of various cache memory ar 
rangements as well as more comprehensive CPU and 
memory or system simulations. 

Two data capture devices are commonly used in conjunc 
tion with the PMON. The first, an HP 16500 logic analyzer 
configured with optional system performance analysis 
software, generates two main types of data. One is a his 
togram that shows the occurrence mix of a user-defined 
subset of the possible CPU cycle types (Fig. 3a). The per 
formance analysis software averages 1000 samples of 
cycles from the PMON on the fly, giving a randomly 
sampled profile of processor activity throughout the dura 
tion of a performance benchmark. The second type of 

Control and 

CPU 
(e.g., Intel486) 

data provided by the HP 16500 is real-time calculation of 
the minimum, maximum, and average time intervals be 
tween the beginning and end of user-defined events (Fig. 
3b). The performance analysis software averages the in 
terval calculations on the fly over a large number of sam 
ples to give, for example, the average interarrival time of 
writes to video memory in a CAD application. 

The other data capture device used with the PMON is a 
less intelligent but higher-capacity logic analyzer. This 
instrument has a 16-megasample-deep trace buffer (as 
opposed to the 1000-sample deep buffer in the HP 16500). 

t o l B l  s a m p l e s  

n i n  t i m e  n o x  t i m e  f t v g  t i m e  T o t a l  s a m p l e s  
6 0 0  n s  6 8 . 3 2  m s  1 0 5 . 7  u s  3 8 4 0  

0 *  1 0 1  2 0 Â »  3 0 1  4 0 1  5 0 1  6 0 *  7 0 *  8 0 *  9 0 *  1 0 0 2  

Logic 
Analyzer 

and 
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Fig. 2. Processor activity monitor external connections. 

(b) 

Fig. The Sample histograms from an HP 16500 logic analyzer, (a) The 
occurrence mix of a subset of Intel486 CPU cycle types, (b) Inter- 
in -rival limes of writes to video memory. 
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Fig. 4. PMON address range 
summary report. 

Cycles from the PMON are captured in this buffer in real 
time and the data is later archived to a host computer's 
hard disk. The buffer typically holds four to five seconds 
of continuous bus cycle activity generated by a 25-Mhz 
Intel486 microprocessor running an MS-DOS application. 
The data can then be used to drive software simulations 
or processed to create summary reports, such as an ad 
dress range summary of how the processor's address 
space is used by operating systems and application soft 
ware (see Fig. 4). 

Backplane I/O Activity Monitor 
The backplane I/O activity monitor, or BIOMON, also cap 
tures information from a personal computer's hardware, 
but instead of the CPU activity, the I/O activity on the 
ISA (Industry Standard Architecture) or EISA (Extended 
Industry Standard Architecture) backplane is monitored 
(Fig. 5). The BIOMON consists of two backplane I/O 
cards: the qualify and capture card and the monitor card. 
The qualify and capture card resides noninvasively in the 
SUT (system under test) and is connected via a ribbon 
cable to the monitor card, which is located in another 
personal computer called the monitor system. The moni 
tor system receives, stores, and processes the I/O events 
captured on the SUT's backplane. 

During operation the qualify and capture card is loaded 
with capture enable flags for each of the I/O addresses 
whose activity is to be monitored on the SUT backplane. 

Once the qualify and capture card is set up, I/O address 
accesses on the SUT's backplane cause an event informa 
tion packet (address, data, etc.) to be transferred to a 
first-in, first-out (FIFO) holding buffer, allowing for 
asynchronous operation of the SUT and the monitor sys 
tem. The FIFO is unloaded by transferring each event 
information packet to the monitor system's extended 

*MS-DOS Â¡s a U.S. registered trademark of Microsoft Corp. 

memory. At the end of event capture, this trace of I/O 
events can be either stored to hard disk or immediately 
postprocessed for analysis. 

One very powerful use of BIOMON is the performance 
analysis of marked code, which is code that has been 
modified to perform I/O writes at the beginning and end 
of specific events within a software routine. The frequen 
cy of occurrence and execution time for each marked 
software event can then be analyzed under different con 
figurations to find existing or potential bottlenecks and 
the optimum operating environment. 

As an example, the performance analysis laboratory has 
developed a special installable software filter that writes 
to specific I/O addresses at the beginning and end of DOS 
and BIOS (Basic I/O System) interrupts. For our pur 
poses, a write to I/O port 200 (hexadecimal) denotes the 
beginning of an interrupt, and a write to port 202 denotes 
the end of an interrupt. The trigger address comparator is 
told to capture data for I/O addresses 200 and 202, and 
any normal application using DOS or BIOS functions is 
run on the SUT. The resulting trace can be postprocessed 
to show which DOS and BIOS routines were used by the 
application, how many times each one was called, and 
how long they executed (Fig. 6a). Other information such 
as the interarrival time between events, exclusive versus 
inclusive service time for nested events, and total time 
spent in various application areas can also be extracted 
(Fig. 6b). Analysis of this information can assist the soft 
ware engineer in optimizing frequently-used functions in 
DOS and the BIOS. 

This technique can also be used to analyze protected- 
mode operating systems such as OS/2 and UNIX. How 
ever, because of their nature, these environments must 

"UNIX Â¡s a registered trademark of UNIX System Laboratories in the USA and other coun 
tries. 
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have tags embedded into the operating system code. (Pro- 
tected-mode operating systems do not allow a user to 
arbitrarily write to specific I/O locations.) 

Another use of the BIOMON is to trigger on reads and/or 
writes to I/O locations associated with accessory cards 
such as disk controllers, serial and parallel interfaces, 
video cards, and so on. For instance, the interarrival rates 
of data read from a disk controller could be examined to 
determine the actual data transfer rate attained by the 
disk mechanism or drive controller subsystem. Additional 
ly, by monitoring the disk controller's command registers, 
an application's disk I/O can be fully characterized. 

Software-Based Tools 

The software-based tools used by the performance labora 
tory allow simulation of different memory architectures. 

Cache Simulator 
The cache simulator is a trace-driven simulation based on 
the Dinero cache simulator from the University of Califor 
nia at Berkeley.1 The simulator takes as its input a list of 
memory accesses (trace file) and parameters describing 
the cache to be simulated. These parameters include 
cache size, line size, associativity, write policy, and re 
placement algorithm. The cache simulator reads the 
memory accesses from the trace file and keeps statistics 
on the cache hit rate and the total bus traffic to and from 
main memory. When the entire trace file has been read, 
the simulator generates a report of the cache statistics. 

A trace file is generated by connecting the PMON to a 
CPU and storing all the memory accesses on the CPU 
bus to the high-capacity logic analyzer described above. 
The data collected from the analyzer can later be down 
loaded to a host personal computer and archived to hard 
disk. To get useful data from the simulator, however, the 
input trace file must be long enough to "prime" the simu 
lated cache. The first several thousand memory accesses 
in the trace file will be misses that fill up the initially 
empty cache. The simulator will report artificially low hit 
rates, because in a real system the cache is never com 

pletely empty. If the trace file is significantly longer than 
Np*, priming effects are minimized. When simulating a 
128K-byte. 2-way associative cache external to the In 
tel486, Np is approximately 40,000.2 The high-capacity 
logic analyzer mentioned above is able to store 16 million 
memory accesses from the Intel486 via the PMON. A 
trace file containing 16 million accesses results in a prim 
ing error of less than 1% in the hit rate calculation (as 
suming a hit rate of approximately 90% for the 128K-byte, 
2-way cache). 

Memory Subsystem Simulator 
The memory subsystem simulator, a program written in 
C++, is a true event-driven simulation that keeps track of 
time rather than just statistics. It builds on the cache sim 
ulator by integrating it into a more comprehensive model 
that simulates access time to memory. It accepts a param 
eter file that includes cache parameters, DRAM and 
SRAM access times, and other memory architecture pa 
rameters. It also reads in a PMON trace file, although this 
one must contain all accesses (not just memory), and 
their durations so that the simulator can keep track of 
time. The result is essentially a running time for the input 
trace file, along with statistics on all aspects of the 
memory subsystem. 

This simulator can be used for making design trade-offs 
within a memory subsystem, such as cache size and orga 
nization, DRAM speed, interleave, page size, and write 
buffer depth. Fig. 7 shows the sample results of a 
memory subsystem simulation of relative memory per 
formance versus external cache size for a 33-MHz In 
tel486 running a typical DOS application. By simulating 
various design alternatives in advance, the design engi 
neer can arrive at a memory architecture that is tuned for 
optimum performance before committing to hardware. 

Conclusion 
The performance analysis laboratory of HP's Personal 
Computer Group has developed a suite of hardware and 
software tools to aid in the design process. The hardware 

*Np equals the number of memory accesses in the trace file needed to fil l the cache. 

(a) 

(b) 

Fig. 6. Reports derived from 
postprocessing BIOMON trace 
file data, (a) Interrupt level 
summary report, (b) Applica 
tion level summary. 
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Fig. 7. Sample results of a memory subsystem simulation of relative 
memory performance versus external cache size for a 33-MHz 
Intel486 running a typical DOS application. 

tools give design engineers insight into the low-level per 
formance of existing systems, and the software tools use 
the data produced by the hardware tools to predict the 
performance of future architectures. 

The performance tools were used extensively in designing 
the HP Vectra 486, and more recently the Vectra 486/33T. 
The tools helped show that a burst memory controller 
(described on page 78) was a better price/performance 

solution than an external memory cache for the 25-MHz 
Vectra 486, and that an external cache was a necessity 
for the 33-MHz Vectra 486/33T. The tools also helped pre 
dict the performance gain of memory write buffers in a 
Vectra 486 system. This resulted in the addition of write 
buffers to the Vectra 486/33T memory architecture. 
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