October 1991

> g - [/} eRckano

© Copr. 1949-1998 HewlettPackard Co.

HEWLETT-PACKARD

J October 1991

™ : R
O Introduction to the HP Component Monitoring System, by Christoph Westerteicher
‘j Medical Expectations of Today's Patient Monitors

Component Monitoring System Hardware Architecture, by Christoph Westerteicher ani

Werner E. Heim

I,

] e Component Monitoring System Software Architecture, by Martin Reiche
J| Component Monitoring System Software

| ' Component Monitoring System Software Development Environment
1Q Component Monitoring System Parameter Module Interface, by Winfried Kaiser

? #) Measuring the ECG Signal with a Mixed Analog-Digital Application-Specific IC, by Wolfgang

Grosshach
? [:\ A Very Small Noninvasive Blood Pressure Measurement Device, by Rainer Rometsch
-
AQ

/ D' A Patient Monitor Two-Channel Stripchart Recorder, by Leslie Bank
f_) C‘. Patient Monitor Human Interface Design, by Gerhard Tivig and Wilhelm Meier
? Globalization Tools and Processes in the HP Component Monitoring System, by Gerhard Tivig

4 "] The Physiological Calculation Application in the HP Component Monitoring System, by Steven
J. Weisner and Paul Johnson

ZL /| Mechanical Implementation of the HP Component Monitoring System, by Kar/ Daumiiller and
" ' Erwin Flachslander
2 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

4
5
64

An Automated Test Environment for a Medical Patient Menitoring System

Production and Final Test of the HP Component Monitoring System, by Otto Sch

Calculating the Real Cost of Software Defects, by Wil

A Case Study of Code Inspections, by Frank W. Blakely and Mark E. Boles

The HP Vectra Personal Computer, by Larry Shintaku
The HP Vectra 486 EISA SCSI Subsystem

The HP Vectra 486/33T

The EISA Connector, by Michael B. Raynham and Douglas M. Thom

EISA Configuration Software

The HP Vectra 486 Memory Controller, by Marilyn J. Lang and Gary W. Lum

The HP Vectra 486 Basic I/0 System, by Viswanathan S. Narayanan, Thomas Tom, Irvin R. Jones

Jr., Philip Garcia, and Christophe Grosthor

Performance Analysis of Personal Computer Workstations, by David W. Blevins, Christopher A.

Bartholomew, and John D. Graf

In this Issue
What's Ahead
Authors

© Copr. 1949-1998 Hewlett-Packard Co.

Dctober 1991 Hewlet-Packard Journal

3

in this Issue

While cost containment is certainly the most publicly visible concern in medi-
cal care today, hospitals are under just as much pressure to improve the qual-
l ity of patient care. Since they can invest in new equipment only every seven to
fifteen years, hospitals want that equipment to be easy to upgrade and adapt
i. I.J to new technologies. In designing HP’s fourth-generation patient monitoring
m system, the engineers at HP's Medical Products Group had to deal with these
and other issues influencing their hospital customers’ investment decisions.
The design of the new system, which they call the Component Monitoring
System, emphasizes modularity, flexibility, and ease of use while addressing
the increasing need to measure new patient parameters and to process this
information using powerful algorithms and data management tools. The articie on page 6 introduces the
system and its overall architecture, while details of the hardware and software architectures can be
found in the articles on pages 10, 13, and 19. The necessary functions of data acquisition, parameter
signal processing, display, and system connections are implemented as hardware and software building
blocks. Application software modules, such as the blood pressure measurement software, can be arbi-
trarily assigned to any CPU in a loosely coupled multiprocessor system. The applications think that they
are running on a nonexistent virtual processor. The architecture makes it easy to configure the system
for both current and future needs in the operating room, intensive and cardiac care units, and other hos-
pital areas, and contributes to a greatly simplified, low-cost production and test process. Patient param-
eters such as blood pressure, the electrocardiogram (ECG), blood gases, temperature, and others are
measured by state-of-the-art modules that can be located close to the patient while the signal processor
and displays can be in another room, if necessary. The ECG, blood pressure, and recorder modules are
described in the articles on pages 21, 25, and 26. The system not only provides the clinician with the raw
data measured by these modules, but also processes it, as explained in the article on page 40, to obtain
many meaningful indicators of physiological functions, such as ventricular ejection and systemic vascu-
lar resistance. Ease of use is delivered by a thoroughly tested user interface design (see page 29), which
can be localized easily for most languages (page 37). Mechanical design, software testing, and produc-
tion and final test of the Component Monitoring System are the subjects of the articles on pages 44, 49,
and 52.

4%"

-— F =

The personal computer, or just PC, based on the Industry Standard Architecture (ISA) pioneered by the
IBM PC, has gained steadily in processing power as each new generation of Intel microprocessors was
introduced. The HP Vectra 486 PC uses not only the latest-generation microprocessor, the Intel486, but
also the new Extended Industry Standard Architecture (EISA). The Intel486 integrates the CPU, a cache
memory, and a math coprocessor onto one chip running at 25 or 33 megahertz. The EISA takes the 16-bit
ISA bus to 32 bits while maintaining compatibility with all ISA I/0 cards. The design of the HP Vectra 486
shows that designers can still contribute creatively within the constraints of industry standards. Among
the design contributions are an architecture that incorporates all of the new technical features of the
EISA and adapts easily to faster versions of the Intel486, a bus connector that accommodates both EISA
and ISA cards, a burst-mode memaory controller, a high-performance hard disk subsystem, and enhance-
ments to the Vectra's basic I/0 system (BI0S) to take advantage of all of the new features. An overview
of the Vectra 486 design appears on page 69, and the articles on pages 73, 78, and 83 discuss the con-
nector, memary controller, and BIOS designs. Performance analysis of many of the design concepts was
done using a specialized hardware and software toolset, allowing the designers to make critical design
trade-offs before committing to hardware (see page 92).

4 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.
L —

/e by reducir
scts, appliesitto a
ition and early removal

vE
software defects. He proposes an algorithm fc
five-year database of software product releases, and shows

can save a lot of money.

Code inspections are now standard procedure in many software development organizations. Are they
effective? The article on page 58 describes the results of one HP division’s effort to collect data to find
out. There are hoth positive and negative findings, but the conclusion is that formal inspections are

beneficial, while the value of informal inspections is still open to question.
R.P. Dolan

Editor

at’'s Ahead

The December issue will feature HP Sockets, a software tool for integrating applications in a network
environment. An article from HP Laboratories in Bristol, England will introduce HP's formal specification
language, HP-SL, and four articles will present examples of the use of HP-SL in software development.
Another article will describe the HP Network Monitoring System for telecommunications networks using
the 2-Mbit/s primary rate interface and the CCITT RZ or #7 signaling system. The 1991 index will also be
included.

de by Hawiett-Packard
laims all warr
ndirect, special, or conse

| contributions m

The Hewlett-Packard Joumal is published bimonthly by the Hewlett-Packard Company to recognize techni
(HP) personnel. While the information found in this public: ved to be urate, the Hawlett-Packard Company d
merchantability and fitness lor a particular purpose and all obligations and liahilities for damages, including but not
attorney’s and exp fees, and court costs, ansing out of or in connection with this publication

es of

guential damag
Subseriptions: The Hewlett-Packard Journal is distributed free of charge to HP research, design and manufactunng engineering personnel, as waell as to
gualified non-HP individuals, libranes, ar sducational institutions se address subscription or change of address requests on printed letterhead lor
include a business card} to the HP address on the back cover that is closest to you. When submitting a change of address, please include your 2ip or

postal code and a copy of your old label

1 ngn-HP authars dealing with HP-re-

Submissions: Althaugh articles in the Hewlet-Packard Journal are primarily authored by HF employees, articles from
contact the Editor

|ated research or solutions to technical problems made possible by using HP egquipment are also considerad for publication. Pleas
befors submitting such articles. Also, the Hewlett-Packard Journal encourages technical discussions of the topics presented in recent articles and may
publish lettars expected to be of interest to readers. Letters should be brief, and are subject to editing by HP

it i 1991 Hewlett-Packard Company. All nghts reserved. Permission to copy without fee all or part of this publication is hereby granted provided
d, or distributed for commercial advantage skard Company copyright notice and the title
the Hewlett-Packard Company

Copyrigh
that 1) the copies are not made, used, display
of the publication and date appear on the copies, and 3)a notice stating that the copyi

submissions, and requests to: Editor, Hewlett-Packard Journal, 3200 Hillview Avenue, Palu Alto, CA 84304 U.5.A

Pleass address inquires

October 1991 Hewlett-Packard Jourmal

© Copr. 1949-1998 Hewlett-Packard Co.

Introduction to the HP Component

Monitoring System

This fourth-generation patient monitoring system offers a set of hardware
and software building blocks from which functional modules are
assembled to tailor the system to the application and the patient.

by Christoph Westerteicher

Over the past twenty years IIP has been a supplier of
patient monitoring equipment to the healthcare industry.
Jatient monitors are observational and diagnostic tools
that monitor physiological parameters of critically ill pa-
tients. Typical parameters include the electrocardiogram
(ECG), blood pressure measured both invasively and non-
invasively, pulse oximeter (Sa0s), and respiratory gases,
among others. The catalog of parameters is still growing
based on the need for better patient care and the techni-
cal feasibility of new measurement techniques.

fatient monitors are used in a variety of departments
within hospitals. These include operating rooms, intensive
care units, cardiac care units, in-hospital and out-of-hospi
tal transportation, and special function areas such as
lithotripsy and x-ray. A patient monitoring system must be
versatile and applicable to most of these areas. This
means that it must support a wide range of configurations
and allow quick adaptation to the patient-specific level of
care. For a normal appendectomy, monitoring the ECG,
noninvasive blood pressure, Sa0s, and one femperature
will suffice. At the other extreme, during a cardiovascular
operation as many as eight different physiological parame-
ters will be measured.

The HP Component Monitoring System is designed (o
meet these requirements. This article outlines the high-lev-
el project goals and the approaches taken to meet them.
It also describes the overall hardware and software archi-
tecture of the HP Component Monitoring System. Subse-
quent articles in this issue highlight the technical contri-
butions of the Component Monitoring System project in
more detail.

Design Goals

The HP Component Monitoring System is the fourth gen-
eration of patient monitors to be designed and built by
the HP Medical Products Group. Based on our experi
ence, current customer needs, and expected future trends
in the medical field, two objectives were viewed as areas
in which HP could make a major contribution. One is the
area of modularity and flexibility and the other is ease of
use.

Modularity and Flexibility. The monitor is composed of the
following functional modules:

® Data acquisition

* Parameter signal processing

6 October 1991 Hewlett-Packard Journal

* Monitor control and data input
* Display
System connects.

™

Each of these functional modules is implemented in a set
of hardware and software building blocks, which as a
whole form the Component Monitoring System depicted
in Fig. 1. Separating the monitor into its generic elements
provides many advantages. First, the monitor can easily
be configured to best meet the application needs of the
individual customer. Parameters can quickly be combined
according to the required level of care and changed when
necessary. Second, adding functionality to a monitor is as
simple as inserting the appropriate hardware into an ex-
isting unit and updating the software if necessary.

A third advantage is that the Component Monitoring Sys-
tem can be kept abreast of new technological trends by

3
i

Fig. 1. In the HP Component Monitoring System, a fourtl
moitor, I'.u'll I'I||||'='_:||‘: .|| m HJII.-- 15

hon pat

et of hardware and software building blocks

© Copr. 1949-1998 Hewlett-Packard Co.

5. The

nputer module ort

enhaneing or redesigning the appropriate functional ele-

ment. Implementation will only affect one building block,

and will be fully backward compatible with existing sys-

rems.

Finally, production has been dramatically simplified. Cus
tomization of each monitor is the last integration step in
production. Thus, all components can be assembled and
tested without knowing the specific configuration in
which they will be used.

Flexibility is enhanced by designing the monitor compo-
nents so that their physical location can be optimized to
address ergonomic considerations and by allowing the
user to program the monitor's default settings and stan-
dard configuration. This means that the monitor can be
adapted to a wide range of current and future clinical

applications.

Ease of Use. Ease of use is of particular importance for
patient monitors in operating rooms and critical care
units, where clinicians use patient monitors to make in
formed decisions about potentially life-threatening situa
tions. In the past, clinicians have had fo sirike a compro
mise between the desired functionality of a patient
monitor and its ease of use. Our goal was to make this
very sophisticated piece of equipment truly intuitive for
doctors and nurses to use. Other areas that we focused

on, and that plaved an important role during the develop-

ment phase were:

Implementation of methods to meet HP quality goals
Minimization of production costs and support for a linear
cost profile. This means that functionality can be seg
mented down to its generie building blocks. Should a par-
ticular feature be needed, the customer pays for it and
nothing more.

« Standardization, ranging from uniform design tools and

software development environments all the way to mini-
mizing the number of different electrical components
used in the Component Monitoring System as well as the
number of mechanical parts needed to assemble the unit,

System Architecture
From an architectural standpoint the Component Monitor-

ing System can be divided into three segments (see Fig

parameter ’]lli!"] S
Computer module
Misplavs
i ¢ P 3 T nidules TDIresS Nne
{ I [1 odule 1s ded
ited to ¢ measurement of one or more physiologica
signals, and is housed in a sej te enclosure. Within the

parameter modules, the transducer signals are electrically
isolated from ground potential, amplified, sampled, and
converted from an analog to a digital format. The digital
parameter values together with the status of each module
are polled at fixed intervals and sent to the computer
module for further interpretation.

Up to eight single-width modules fit into one module
rack. The module rack can be either an integral part of
the computer module or totally detached, in which case it
would be called a satellite module rack. The satellite
module rack is connected to the computer module by an
umbilical-cord-like cable, which carries both the digital
signals and a 60V de power line for the parameter mod-
ules. One computer module can support as many as four
satellite module racks. This concept allows the user to
position the parameter modules as close as possible to
the patient, where the signal is measured. The transducer
cables can thus be kept short, minimizing the amount of
wiring as well as the tendency for it to become tangled
or draped over the patient.

Computer Module

The computer module is the main processing unit. It con-
sists of a cardeage that can house up to 23 function
cards and one de-to-de converter (Fig. 3). Function cards
currently available include CPUs, memory cards, interface
cards, display controllers, and a utility card. For the first
release. a total of 11 function cards were designed. The
interconnection within the cardcage takes place via the
central plane, a motherboard located in the middle of the
chassis with press-fit connectors mounted on both sides

||-:..jj:!‘||||.r..-; el

Fig. 3. Thu nnputer medule house:

October 1991 Hewlett-Packard Joumal i

© Copr. 1949-1998 Hewlett-Packard Co.

Display

and Real-Time
Keypad Recorder Printer Network
& A A r 3
W L 4
Hardware Display ; Srie
Control -b b-m AS-232 W pistribution [N
A .
A 4 \ 4 v A
Interface Human I
Applications | Interface o Network, »«»
|
Second-Level
Processing Alarms Trends .Ca_lcukﬁnns a0
| Logical Data Buses
Firstlevel [“gog pressd Press2 | 8a0 AUX see
Processing - : - | 1 "
h 4 h 4 N 5
Signal { W Pai Parameter! —_—
Acquisiton oduie J| oduie J§ Module
M a F'y
. From
<——From Patient————» Ventilator
Fig. 4. Functional block diagram of a Component Monitoring Sys-
tem patient monitor. The shaded boxes are software functions on
the CPU card processors. The solid boxes are specific hardware and

firmware functions

of a printed circuit board. Data exchange between the
function cards takes place on the message passing bus.
This bus is routed to all 23 slots on the central plane,
allowing a high degree of freedom as to where a function
card can be inserted. The message passing bus is the
backbone of the Component Monitoring System. Many of
the goals listed above only became possible with the help
of this communication concept.

The basic function of the message passing bus is that of
a broadcast system. Each message sent on the bus con-
sists of a header, which describes the content, and the
actual data. A source (e.g., a CPU card) will obtain con-
trol of the message passing bus and transmit its informa-
tion. The data is not transmitted in a point-to-point fash-
ion from one source to one receiver. Instead, message
passing bus data is transmitted without any specific desti-
nation, and it is up to the function cards to watch for the
information needed by their applications. As soon as a
card detects a match between a header it is looking for
and the header of the message on the bus, it automatical-
ly pulls this data into an internal stack.

The activities of bus arbitration, transmission, header
matching, and data reception are controlled by the mes-
sage passing bus chip. One of these interface chips is
located on each function card that actively takes part in
the communication process. The chip was designed spe-
cifically for the Component Monitoring System. It also
was the first HP production ASIC (application-specific 1C)
to be designed using a silicon compiler toal.

A more detailed description of the message passing bus
concept and the design of the interface chip can be found
in the article on page 10, which covers the Component
Monitoring System hardware architecture.

8 October 1991 Hewlett-Packard Journal

Displays

The customer can choose either a monochrome or color

high-resolution display. Multiple independent displays can
be used to present different sets of information to specif-
ic user groups. For example, the surgeon needs a differ-

ent presentation of patient information than the anesthe-
siologist during surgery.

Physically separating the display from the computer mod-
ule gives the user a choice of screen sizes and the possi-
bility of mounting the computer module at a remote loca-
tion when space next to the patient is al a premium.

The user interacts with the monitor through a combina-
tion of hardkeys and softkeys on the display keypad or
through a remote keypad which functionally duplicates
the keys on the display bezel.

Software Modularity

The concept of a modular system also applies to the sofi-
ware architecture (see Fig. 4). Application-specific mod-
ules represent the basic building blocks out of which the
total solution can be assembled. The ECG application, for
example, including the signal interpretation, alarm han-
dling, and control interaction, is all encapsulated in one
module. To the surrounding environment these application
software modules are totally self-contained packages, and
only exchange information with one another via the mes-
sage passing bus. By virtue of this concept, it is possible
to link each module as an independent entity with any of
the other modules and assign it to one of the Component
Monitoring System CPU cards.

A more detailed description of the software architecture
can be found in the article on page 13.

All of the Component Monitoring System software is
stored on EPROM function cards. These cards are physi-
cally located next to a CPU, and the applications running
on that CPU execute directly from the adjacent memory
card. All other CPU cards in the monitor get their appli-
cation software downloaded into the on-board RAM dur-
ing boot time. The advantage of this solution is that in-
stalling software is as easy as inserting one EPROM card.

Summary

The Component Monitoring System has proved that the
concept of component modularity can be extended far
beyond the mere ability to mix and match parameter
modules. Modularity in this system means that the cus-
tomer can tailor the patient monitor to best fit the appli-
cation all the way from the parameters that need to be
registered to the displays and interfaces the system
should incorporate. The Component Monitoring System
can also grow with the user’s needs over time, and thus
secure the hospital’s assets for many years.

The success of the modularity concept is reflected in the
fact that some of the hardware and software elements
have found their way into other medical devices manufac-
tured by HP. Overall, the Component Monitoring System
architecture has proven it can function as a monitoring
platform for years to come.

(continged on page 10)

© Copr. 1949-1998 Hewlett-Packard Co.

e e e s R Y= —

.

Medical Expectations of Today’s Patient Monitors

f patient monitors since the mid-1960s. The HP 7830, HP

ors have measured vital signs like ECG, blood

supplier o
G, and HP 7853x monitc
diaxide, inspired oxygen, and others

need to communicate
rthis purpose, several years aqo, HP introduced a senal
distribution network (SDN), which makes it possible to transmit 2 multitude of
parameters, high-resolution waveforms, and other information to as many as 32
participants in a synchronous way. These features are not easily achievable with
modem asynchronous LANS.

ral stations. For

Medical Expectations

Most of today’s patient monitars do not satisfactorily fulfill many of the current
and future expectations for these systems. The increasing need to measure new
parameters and to pastprocess this information using powerful signal processing
algorithms and data management taols require a different approach. At the same
time, gur customers are under tremendous cost containment pressure, allowing
them to invest in new equipment only in cycles of seven to fifteen years. Having
these and other customer needs in mind, we launched a development program for
a new patient monitoring system. The goals of our project were to:

Develop a solution that can be easily adapted to our worldwide customers’ medi-
cal as well as financial needs

Develop a user interface that allows the user to control the system easily through
different means including softkeys, touch, and remote keyboards (see article, page
29)

Develop a solution for all major languages, including Asian languages.

Develop a solution that is backwards compatible with the existing LAN (SDN) and
future LAN implementations.

Develop a solution correspending to our customers’ space restrictions. This often
means acquiring measurement data close to the patient to avoid the so-called
“spaghetti syndrome”—too many cables around the patient—and processing
and displaying the measurement data farther away from the patient,

Develop a solution that allows additional CPUs to be added to the system accord-
ing to the signal precessing needs, an

can be addressed directly.

fvides independent displays that

Conclusion

oncept o
5 matrix

the bedside 1
tally and vertically f

needs, while the vertical axis shows vanous ways in which these neeas are met in
specific applications. The last row of the matrix shows examples of possible future
capabilities that can be added easily to the Companent Monitoring System if and
when they become available

The HP Compenent Monitaring System is-an ultraflexible patient monitoring sys-
tem that can be adapted to almost all manitoring needs that arise in hospitals
worldwide. Its built-in modularity and an HP proprietary message passing bus
make it independent of technalogy changes in microprocessors, LANs, or displays.
This is expected to result in a very long product lifetime, thereby protecting our
customers’ investments. By offering different configurations of the Component
Monitoring System, we provide a wide price/performance range, and through a
flexible upgrade strategy, we ensure high adaptability to our customers’ future
needs

The Component Monitoring System is a truly international development that in-
volved engineers in the US.A and in Europe. Today, it is being manufactured at
two HP sites, one in Europe and ane in the U.S.A.

Such a significant technology step can never be taken without encountering chal-
lenges. Thanks to the engagement and dedication of all of the team members,
these challenges were met successfully.

Frank Rochlitzer
General Manager
Surgical and Neonatal Care Business Unit

= = =0 B "
28 = z z 5 g £ Application
s = 2 @ 3 E] =
g9 £ g ?} 3 E E & 5 Solutions
&= @ = & a S S £E =
= | (eat 1 I ITIRT L
[Wﬂ m Lo || | {s:f::-.r:,: ‘ Dialog | Wall [5 1" | Neonatal Intensive
I - — = — =) Y| =5 cuelni
Physiological »
: |
7 ~cimieal | [T il il
— (AT() N in Information {Tauch [lelng o Intensive
I System |/ | . B0 Care Unit
Alrway =r B T 3
. - L 3 L]
. . . . o . . |
- -
m— 1
or r ‘ m:_m;al == _| Operating Room
J =1 - T
Blood Gases ' I
| | i |
v v v v v v v
=7) K ' 1| CEEE (ooctors | prsveiid)]
7/ /J ‘ Flat H ey ‘ e | Pt -"f | Ca:h:te:i:atiun
S Based System R} — s) i S aho
Wireless = Workstation |) © raery
Sensors

Fig. 1. The bedside monitoring concept of the HP Component Manitoring System

October 1991 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

Acknowledgments series of articles on the Component Monitoring System.

The design of the Component Monitoring System has Besides the authors of each chapter, and the numerous
been a team effort involving at times up to 50 engineers unnamed supporters, one person deserves particular rec-
located at the Waltham and Béblingen Medical Divisions. ognition: Heike Schreiber. Her continued enthusiasm and
All of these individuals and many others deserve recogni- devotion helped to make this issue of the HP Journal
tion for their hard work to make this product a success. possible.

I would also like to thank all who contributed to this

Component Monitoring System
Hardware Architecture

Up to 23 function cards residing in a computer module communicate over a
message passing bus. The computer module, the display, and the
parameter modules that measure vital signs can be in separate locations
as needed by the application.

by Christoph Westerteicher and Werner E. Heim

The prime ohjective in the development of the HP Com- example, is provided by an application dependent number
ponent Monitoring System was to build a patient monitor of CPU cards, working together as a loosely coupled mul-
that would adapt optimally to the majority of clinical tiprocessor system. Based upon a 16/32-bit microproces-
applications, now and in the foreseeable future. To the sor, each CPU card is an independent subsystem, includ-

R&D team, this meant modularity, but not just in the
sense of being able to mix and match parameters. The T o
goal of this project was to carry the idea of configurabil- \BpHLy (Moneshioms, or Coke)

ity a quantum leap into the future. Power Human ‘
Supply interiace

Major Parts
The Component Monitoring System can be segmented into
three parts (Fig. 1)

« The rack and parameter modules

« The computer module

« The display.
This segmentation is not just a theoretical way of looking
at the Component Monitoring System. The system can
actually be separated into these components. It is there- - e =
fore possible to place the parameter modules close to the WeseaipFassicy B1s
patient and position the display within sight of the anes-
thesiologist, while the computer module can be totally

Parameter
HBodule
Interface

removed from the vieinity of the patient. CPU(s) EPROM

Pack Interface
Computer Module : e
The computer module incorporates all the processing I

power, the interfaces to other devices and networks, the

display controllers, and drivers for human interface equip-
ment. Parameter
Modulas

These functional elements have been broken into their

eneric components, and then designed and implemented ; . =

8 S I 5 = ; I . Fig. 1. Block diagram of the Component Monitoring System hard-
as individual function cards. The processing power, for S7ash roRTAOTNS

10 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Local Extension Bus

Message Passing Bus

Control
- Data 4
A
Agdress
A
Clock Generator and Synchronizer
A A 7
o
Passing Bus o3 RAM
A A A i Intertace
A A internal A A ‘
Bus
W v Control
v \ 4 Data v A
- -
A v A Address

ing a large amount of static memory, boot EPROM, and
an interface chip for the computer module’s internal bus,
the message passing bus (Fig. 2). The ability to work as a
self-contained, independent entity was the smallest com-
mon denominator we wanted to apply to our computer
module building blocks. Because of this concept, process-
ing power, interface cards, or display controllers can be
added depending upon the customer’s application. New
function cards can be added by plugging them into the
computer module without interfering with the existing
configuration.

Local resowces of a function card, like static memory or
EPROM, can be extended by adding a battery-buffered
static RAM card and an EPROM card. They connect to a
local extension bus, which is routed on the same connec-
tor as the message passing bus, thus allowing an identical
design for all slots on the backplane.

At first release of the Component Monitoring System,
there are 11 function cards. The spectrum includes the
above-mentioned processor and memory cards, interface
cards to RS-232 devices and HP’s medical signal distribu-
tion network (SDN), high-resolution monochrome and
color display controllers, and other cards.

Each funection had to fit onto the standard funciion card.
To make this possible, several application-specific inte-
grated circuits (ASICs) provide high performance in a
minimum of card space. Surface mount technology allows
components in very small packages to be mounted close
together direcily on the surface of a function card. The
benefits of these new technologies are highly automated
production processes, reduced part count, and increased
reliability.

Message Passing Bus

The message passing bus represents the backbone of the
Component Monitoring System. It is by virtue of this so-
lution that it was feasible to implement modularity in
such an extensive fashion.

The message passing bus is based on a message broad-
casting system, in which one bus participant transmits
information without having to specify the address of the

h 4 vy Vv
Address Status and Control
Decoder Register

Fig. 2. CPlI card block diagram.

receiving device. Instead, every message is classified by a
header, indicating the content of the message. A bus par-
ticipant interested in a specific class of messages writes
the header of the information and a priority into the sig-
nature RAM of its message passing bus interface. When
the header of the message on the bus and the header in
the signature RAM match, the receiving card’s message
passing bus interface automatically loads that message
into its FIFO buffer. Depending on the priority assigned,
the incoming information is pushed into either the
high-priority or the low-priority FIFO, thereby preprocess-
ing data for the CPU. Comparing headers and moving
information into and out of the FIFOs is controlled by the
message passing bus interface chip with no interaction
from the data processing device. Fig. 3 is a block diagram
of this chip.

The major advantages of this concept are threefold. First,
messages only need to be sent once, regardless of the

number of bus pariicipants interested in the information.
This guarantees that bus bandwidth is not used merely to

Data
Recelve 1 —
4 (Slow Data) mmm« ‘

Message

\}- | Passing
Bus

—» |

CPU g

Transmit 1
(High Priority)

Transmit 2

(Low Priority)

|
_,.\‘
|
|

Fig. 3. Message passing bus'interface chip block diagram

October 19891 Hewlett-Packard Journal - 11

© Copr. 1949-1998 Hewlett-Packard Co.

duplicate messages going to mulliple receivers. Second,
the absolute bus bandwidth is defined by the speed of the
message passing bus interface chip. The chip controls the
transmit and receive FIFOs and compares headers with-
oul support from the data processing device. In essence,
the message passing bus chip is a buffer between a
high-speed bus and data processing logic working at vary-
ing speeds, which should not be interrupted by every bus
activity if it is to function effectively.

The third major advantage of the message passing con-
cept is that new system cards can be added to a monitor,
and as long as they know the algorithm for allocating
headers, they can actively participate on the message
passing bus. The bus has a decentralized arbitration algo-
rithm, which determines how each participant accesses
the bus. Each interface chip incorporates arbitration cir-
cuitry based on a round-robin-like system, assigning the
bus on a rotating priority basis. If the current bus master
is level n, priority n—1 will be given to the next interface
requesting the bus, and so on sequentially. This guaran-
tees that the bus is shared equally among all of the func-
tion cards and is dynamically distributed every time a
message is sent.

The message passing bus chip was designed as an ASIC,
using a silicon compiler tool to develop and simulate the
circuit’s functionality.

Central Plane and Power Concept

In the center of the computer module chassis is a 23-con-
nector motherboard with press-fit sockets mounted on
both the front and the rear. The message passing bus is
routed to all 23 slots on this central plane (Fig. 4).

Since all of the function cards are mechanically identical
in size, any card can be inserted into any slot of the cen-
tral plane, thus making possible a wide range of configu-
rations. The only exemption is the de-to-de converter,
which always is located in the same slot. This one card
provides the power for the computer module, and is
sourced with 60V directly from the Component Monitoring
System display (Fig. 5).

This somewhat uncommon power architecture was neces-
sary to comply with the stringent leakage current limits
imposed on medical equipment. If the Component Moni-
toring System were to incorporate separate power sup-
plies in the display and the computer module, the leakage
currents of both to ground would be added together, mak-
ing it very difficult to reduce this value to below 100 pA.

Fig. 4. Computer module central plane and function cards

12 October 1991 Hewlett-Packard Journal

Computer
Module

Parameter Module Interface

Parameter
Module

Fig. 5. Power concept. The single power supply is housed in the
display

The second reason for taking the power supply out of the
computer module was the need to reduce the amount of
heat dissipated in this small box to a minimum, so as not
to jeopardize reliability. We therefore decided to have
only one power supply for the entire Component Monitor-
ing System, and to house this in the display.

The Display

Customers can choose either a monochrome or color
14-inch display (Fig. 6).These are high-resolution, nonin-
terlacing, high-contrast displays designed and built specifi-
cally for medical applications.

To provide outstanding waveform quality, the displays and
the display controllers have a very high horizontal resolu-
tion of 2048 pixels. At this pixel spacing the human eye
can no longer resolve the individual dots, so the curves
appear very smooth.

The displays also incorporate the Component Monitoring
System conirol panel, located beneath the sereen. This
control panel is the main means of interacting with the
monitor. It consists of a membrane keyboard, LED indica-

Fig. 6. The display also incorporates the control panel

© Copr. 1949-1998 Hewlett-Packard Co.

tors, and the human interface board, which is an HP-HIL
device looped through to the computer module.

Summary

The hardware architecture has proven to be one of the
steps on the ladder 1o success of the Component Monitor-
ing System. With the advent of this new monitor, produc-
tion has been automated and streamlined to an extent

unheard of for such a complex device as a patient moni
tor. The parts standardization effort has resulied in a

mere 300 different items for the entire system. Our cus-

tomers can now have a state-of-the-art monitoring system
that they can configure to their specific needs, and at the
same time be assured that their system has been de-
signed to stay abreast with technological or application
changes for many years to come.

Acknowledgments

For their outstanding results, for their endurance, and for
being a most enjoyable team to work with, our thanks go
to all members of the Component Monitoring System
hardware group.

Component Monitoring System
Software Architecture

A modular design leads to a complex but easily manageable system that

ensures economical resource utilization.

by Martin Reiche

HP Component Monitoring System patient modules can be
mixed and matched to suit the application. A module is
added simply by plugging it into any free slot in the mod-
ule rack. Wouldn't it be convenient to handle all functions
implemented as software the same way? Just find a free
resource on any CPU card and assign the required set of
software building blocks to it. Use only as many CPUs as
necessary. This article will show that this approach is not
only viable, but also appropriate in terms ol both develop-
ment economics and resource utilization.

The basic idea of having building blocks with standard-
ized interfaces that can be arbitrarily combined has prov-
en ils power in many projects. The Component Monitor-
ing System patient signal acquisition system, computer
module, and message passing bus concept reflect this
idea well.

This approach should also be promising for software.
However, a problem with software is its complexity, both
internally and in terms of interaction with exiernal enti-
ties. Component Monitoring System software modules
show significantly different profiles in resource require-
ments, must share a multiprocessor real-fime system in
varying configurations without conflicts, have to act and
communicate in a meaningful way with regard to the cur-
rent configuration, and are implemented by different peo-
ple in different places at different times. This makes stan-
dardization difficulr.

We will show how these problems were overcome, both
from an architectural point of view and from a develop-
ment environment perspective. As we proceed, we will
encounter a continuously recurring question in different
contexts: How can we provide the needed creative free-
dom for each individual, and at the same time manage
their cooperation and integration into a coherent total
solution?

Layered Software

As can be seen in Fig. 1, the Component Monitoring Sys-
tem'’s functionality can be represented in a layered
scheme. Similar to existing computer systems, the hierar-

chy has four levels:

Application Software m m

Virtual | Processor
Operaling
System
' | |
| |
. m m m “
IQUUIES QAT NTeriac

Fig. 1. The hasic task allocation scheme of the Component Monitor-
ing Svsten uses a layered software structure. The lower-layer activi-
ties are transparent to the application software maodules, which are
cii-.“'l,u,lml Lo run on a virtual Processor.

October 1991 Hewlett-Packard Journal - 13

© Copr. 1949-1998 Hewlett-Packard Co.

Component Monitoring System
Software

Total amount of source code: 315 KNCSS
Number of software modules developed 30
Number of module instances in an instrument 43
Number of message passing bus headers allocated

by the operating system 880
Average data flow on the message passing bus 50 kbytes/s

The CPL cards represent the basis for all data process-
ing. They communicate over the message passing bus. All
interfaces to external devices are found here.

Firmware located on these cards provides services to the
higher layers of the model, The firmware implements
complex application independent functions by convert-
ing commands and protocols into hardware related sig-
nals. Patient parameter modules play a special role; con-
trolled by firmware, their analog and digital hardware
converts the incoming patient signals into digital infor-
mation accepted by the computer module.

The operating system establishes the data paths between
the application software modules on the one hand and
the firmware on the other. It controls the execution of the
application programs, moves messages back and forth,
and continuously supervises the correct execution of all
Tunctions.

It is up to the applications to provide the signal interpre-
tation, computation, alarm generation, and similar fune-
tions and to support user interaction by drawing windows
and menus on the screen, How functions are implem-
ented in the lower layers is hidden from the application
software modules.

Modules and Messages

All function cards are designed so that they can be arbi-
trarily combined over the central plane. They can frans-
mit and receive messages and perform their functions
regardless of the slots in which they reside.

In a straightforward extension of this principle, the Com-
ponent Monitoring System software architecture allows
for arbitrary distribution of software to the various pro-

cessor cards (see Fig. 2), These self~contained application

software modules are the building blocks of the modular
system. Each module represents a large functional area
for example, the signal processing for the blood pressure
measurement with its affiliated aspects of alarming, con-
trol interaction, transducer calibration, and so on.

To achieve this modularity, the current configuration is
made transparent to the modules. They will execute on
any CPU card, and their sharing of a CPU card with oth-
er modules will not interfere with their operation. The
only way they can communicate is to transmit and re-
ceive messages. As with the message passing bus, the

14 October 1991 Hewlett-Packard Journal

Press.3 ASW

L]
Press.2 ASW Temp.1 ASW .
| | . .
Press.| ASW Trend ASW HIF.2 ASW <
|
HIF.1 ASW ECG ASW Blarm ASW

Network ASW
| .

ASW = Application Software Module

Fig. 2. Apphcation software modules can be assigned arbitrarily to
the available CPU cards to achieve the most economical resource
utilization.

origins and destinations of these messages are hidden
from the application.

This principle guarantees maximum flexibility in reaching
the required functionality with a given hardware set. It
also reduces development risks, since at the beginning of
a complex project, neither the sizes of the modules nor
the resulting processing requirements can be accurately
estimated.

Inside a Module

From a programmer's point of view, a module is com-
posed of a number of related C-language source files (see
Fig. 3). There are different types of files. For example,
PROG files contain executable code and variable defini-
tions, and TEXT files consist only of character codes.

Following a tailored syntax, an ASCII file called a module
table provides comprehensive information about that mod-
ule. Identification, communication behavior, execution,

and resource requirements are specified in this table. This
file is converted 1o C source code by means of an HP-de-
veloped compiler called mte. In this way, a generic module

Fig. 3. An application software module consists of a module table
and a set of C source files, A proprietary compiler, mte, converts the
module table to C source code.

© Copr. 1949-1998 Hewlett-Packard Co.

structure is defined, along with a formal description of
interfaces among the modules and the rest of the system.
These standardization rules are followed by every soft-
ware designer, specify the guidelines for all interaction,
and lay the foundation for a fully automated code genera-
tion process. Thus, machine-processed specification en-

Jforees standardization.

All C code is then compiled and linked. yielding a num-
ber of object files, which are loaded unchanged into an
EPROM card to be plugged into the computer module.

Virtual Processor

The main characteristic of this software concept is that
the current configuration is invisible to all of the applica-
tions. They do not know which modules are assigned to
which processor, how many processors are available,
which interface cards are present, or where messages
come from and where they go. Therefore, software devel-
opers must not make any assumptions as to where their
applications will be executed. The only way modules are
allowed to communicate with each other is by exchanging
messages.

These are prerequisites for a truly modular system in
which applications can be mixed and mafched according
to a predefined functionality. With this in mind, it is ap-
propriate to define an abstract programming model that
we call a virtual processor (see Fig. 1). This is a collec-
tion of artificial resources such as application priorities or
data links. The virtual processor supplies the application
programmer with all of the construction elements neces-
sary to implement functions effectively and straightfor-
wardly. The programmer can write functions that process

Time-Driven Message-Driven

e A time period has A message has
elapsed or the arrived.
expected message

has not arrived.

Action r.-"
-

7, . r, S
" i

Operating system starts
execution tree and passes
pointer to message.

Operating system starls
execution tree.

Fig. 4. Dxecution trees can be started after a certain amount of
time has elapsed or whien a certain event oceurs.

Component Monitoring System
Software Development Environment

All development was performed on HP 9000 workstations running under the HP-UX
operating system and connected by a local area network. This inclides the eparat

fevelopm 5. and all applications and documentation. Each
n tacilities {HP 64000} ana couid be

Starting out with only a few developers on a single HP 000 Series 500, we ended
up with about ten HP 9000 Series 300 systems being used by 20 software engi-
neess toward the end of the project

Thanks to the power and flexibility of these HP-UX systems, the continuous evolu-
tion of the development environment proceeded very smoothly with respect 1o
both its extent and its comprehensiveness. For example, all generic data (e.g.,
symbal tables for message specification or tools for process automation) was
automatically updated on all machines. As a consequence, at any paint in time,
identical processes were used project-wide—a prerequisite for smooth integration
of the components.

Since all application imodules have the same form, it was possible to implement
the standard generation processes only once. Besides the definition and evalua-
tion of the module table, a uniform process supports the implementation of any
application. This turned out to be very helpful, for despite the different functions of
the modules and the various inclinations of the development engineers, one al-
ways finds recurring features in any implementation. This makes software mainie-
nance easier for engineers other than the original programmer. For example, differ-
ent language options of a module can be generated without touching any code.

In our environment, a single engineer had complete responsibility for specifying,
designing, and implementing each software module. The activities of all of the
developers had 1o be decoupled as much as possible. Since enforced synchroniza-
tion would have been intolerable, a major requirement for the development envi-
ronment was to suppart easy generation of running versions at all involved work-
stations Here the Component Monitoring System’s self-configuration,
implemented as the boot process, proved valuable. All software modules are
self-contained and independent. During the boot process the madules are initiated
within the current run-time enviranment. This environment can always be tailored
1o meet the needs of the module under construction

The integration process is always executed the same way. The current versions of
the operating system and other modules are collected from the workstations on
the LAN and are loaded into the current work environment. A configuration table
then assigns the modules to CPUs in such a way that each module under construc-
tion runs on an emulated CPU. Symbol 1ables can then be corrected beforehand to
allow for symbolic access to all variables and functions

I summanry, the extensive effort invested in the development environment and
boot process has been very heneficial 1o the entire development and maintenance
process, as well as 1o the product’s quality. Other projects leveraging from the
Component Monitoring System platform have profited and will continue to profit
from this comprehensive and comfortable development environment

messages without having to pay attention to how the in-
formation is distributed. Concepts such as interrupts, task
control blocks, and the message passing bus chip can be
ignored by the programmer, who is free to concentrate on
the medical application. Thus, the application program-
mer's task is to convert the specific functions into pro-
grams that can run on the virtual processor, and the oper-
ating system’s task is to support this program module by
means of the current hardware configuration and ensure
that any two applications on a single CPU do not inter-
fere with each other.

October 1091 Howlett-Packard Journal - 15

© Copr. 1949-1998 Hewlett-Packard Co.

The features of the virtual processor are defined very
formally, and the application programmer can only build
on them. The interface specification of a module with
respect to the virtual processor is found in the module
table and is expressed in terms of the virtual processor.

This abstract model and its formal presentation have
proven to be extremely useful, both for separating tasks
within the development process, and for automating the
integration process.

Execution Model

Every module’s program code can be considered a set of
routines forming separate execution trees. The entry rou-
tines, that is, the roots of the trees, can be executed after
the completion of a certain time period or upon reception
of a message (Fig. 4). Since functional areas within a
module may have different precedence requirements, ex-
ecution trees can be assigned to one of several applica-
tion priorities (see Fig. 5). For example, continuous wave-
form processing has the highest priority assignable,
because it must process a batch of samples every 32 ms,
and thus may delay the execution of all other functions if
given a lower priority.

The total computing capacity of a certain CPU may be
distributed among several execution trees within several
modules with several priorities. The overhead generated
for context switching is minimal.

Control Module 1 Module 2 .Module n
Flow
™ B __
|
rd ‘ '
) \ ’ o % o 5
_’— — . .
AP1 ! |
AN <4
h N
(
\ ” b 7 b
-~ e A
AP2
— <

,I! ,
-\

e !.._
Sample Frame Timing:

T I T T
| $ 1

0 2 ms
Message Distributor

AP = Application Priority

Fig. 5. Application module software can be thought of as a set of
execution trees, These are assigned to application priorities, which
are virtual processor resources.

16 October 1991 Hewlett-Packard Journal

Symbolic Identification:

FEERESTE IR T N

‘ Allocation
w at Bool Time

12:bit Message Passing
Bus Header

Fig. 6. Every message has a composite symbolic identification,
which is evaluated at boot time, when message headers are allo-
cated.

The application programmer specifies the priority of each
execution tree. At run time, the execution time is parti-
tioned externally to the module, without effecting its
funectionality. The programmer also specifies the amount
of execution time required. The operating system guaran-
tees every application the timely execution of each tree
and checks this in a continuous fashion. This is essential
to the safety of patient monitoring.

Communication Model

As already mentioned, communication among software
modules and interface cards is implemented as an ex-
change of messages. Message routing functions reference
a 12-bit header, allowing for a maximum of 4096 different
data streams. It would have been possible tfo assign all
headers project-wide in advance, but the Component Mon-
itoring System employs a more elaborate process for es-
tablishing data paths. Every message has a composite
(six-field) symbolic identification assigned. This is eval-
uated at boot time when headers are allocated (see Fig.
6). Modules transmitting or receiving messages specify
this symbolic identification within their module tables.
This method allows the implementation of some impor-
tant concepts. If modules are installed more than once,
say for multiple pressure lines, multiple similar data paths
have to be established appropriately. This can be done
externally to the modules at boot time simply by counting
the source numbers shown in Fig. 6. Also, related mes-
sages can be collected into message classes by assigning
identical keys, for example to the type field. Each mes-
sage of a specific class then shares a predefined struc-
ture.

Programming with message classes represents a powerful
method for dealing with configuration dependencies. The
operating system supports broadcast messaging in a very
convenient way. For example, all alarm messages gener-
ated by various sources are transmitted in messages of
type ALARM. The central alarm management facility—an
application software module—can specify that it wants to
receive all alarm messages and then process them in the
order that they appear. Using wild-card specifiers for the
unknown fields in the symbolic identification keeps the
module code receiving broadcast messages regardless of
the current configuration. Blocks of memory for class
members can be requested with a simple entry in the
module table. The configuration dependencies are then
resolved at boot time.

Besides broadcasting, the Component Monitoring System
operating system uses (wo other important types of com-
munication: static point-to-point and dynamic point-to-

© Copr. 1949-1998 Hewlett-Packard Co.

Application

‘Binding Interfaces Standard Parameter Interface Level
To Applications Resources (Examples)

Operating

System Leve!
Fig. 7. Different communication
models are built on top of the mes

Hardware sage passing bus broadcast func-

Level Lon.

point. Static links are private communication links be-
tween two entities, most notably application software
modules and interface cards. Dynamic links are valuable
when one resource is used by different application soft-
ware modules at different times. A temporary write to a
screen area or the reading of softkeys are examples of
this concept. Classes of dynamic link nodes can be de-
fined using the mechanism described above (link nodes
are entry points into an application software module
whose affiliated message is of some type specified in the
receiver’'s module table). Fig. 7 summarizes how these
communication types are built on the message passing
bus broadeast facility to serve the upper application level.

The standard parameter interface represents the backbone
of patient data communication within the Component
Monitoring System. It is a set of class definitions that
forms a kind of logical data bus on which all patient data
processing modules can broadcast their data. Any receiv-
er can then operate on waveform, numeric, alarm, or oth-
er messages in a completely decoupled fashion.

Automated Configuration

Modules contribute to the system’s flexibility only il their
handling is simple, comparable to the ease of handling
patient parameter modules. To achieve this, the Compo-
nent Monitoring System development environment makes
heavy use of automated processes, acting on formal inter-
face descriptions. The module table, for example, is com-
posed of the formal specifications relating to the specific
module. When specifying communication behavior and
execution requirements, the programmer can reference
items of interest by means of symbolic names—the same
names that can be found in the program source code.

As long as the system is not powered, all hardware and
software components appear unrelated. The computer
module cards are all connected electrically, but no logical
data path is apparent. The CPUs are “empty” (Fig. 8a). At
boot, a monitor configuration table located on the central
EEPROM tells the boot process how to arrange software
modules on the CPU cards (Fig. 8b). Using the module
tables in the individual modules, the boot process binds
the modules into the run-time system. After the program
code has been transferred to the CPU cards and all con-
figuration dependent data structures have been initialized,
all modules will operate as expected. More than 40 appli-
cation software module instances are installed in the
Component Monitoring System.

In this process, the module tables supply all information
necessary to install the data paths. In the first step, reser-
vations for message passing bus headers are accepted. All
references to communication concepts such as message
classes can then be resolved. The process is analogous to
the link process for computer object code. More than 800
message passing bus headers are allocated by the boot
process; this gives an idea of the amount of communica-
tion that is required to operate the system.

Delaying the linking of software modules until the boot
process has, among others, one important advantage: it

PRESS |
ECG
TEMP
Maonitor
Table
PRESS 3x on1 |
ECG1x on2 |
] | TEMP 2x on3
CPU1 CPU2 CPU3 Utility Board
(a)
PRESS
ECG
TEMP
Monitor
Configuration
Table
beted ke s ‘ PRESS 3x on 1
P"’“'s | ECGA T’"‘F"z ECG 1x on2
wasd | | u | GTP‘ I | TEMP2x on3
CPU1 CPU2 CPU3 Utility Board

PRESS, ECG, TEMP: Module Code

Press.x, ECG.x, Temp.x: Module Instance Data
(b)

Fig. 8. A monitor conliguration table tells the oot process how Lo
arrange the application software modules on the CPLs,

October 1991 Hewlett-Packard Journal - 17

© Copr. 1949-1998 Hewlett-Packard Co.

allows configuration independent implementation and an
ease of software maintenance that is normally true only
of hardware elements.

Conclusion
Both the software design and the Component Monitoring
System software development environment (see page 15)
placed great emphasis on deceniralization and decoupling
and on the standardization and formalization of interfaces.
The latter provides the opportunity for comprehensive
automation, which in turn shows significant advantages:
= Automation of all external activities supports a smooth
integration of each module into the total solution. It elimi-
nates communication problems within the development
team by separating responsibilities and establishing non-
corruptible entities.
Automated processes are reliable and efficient. They only
have to be implemented once, and future users do not
need an in-depth understanding to be able to use them.
* Automated processes enforce consistency. Deviations
from a standard are prevented by the tools. Specification

18 October 1991 Hewlett-Packard Journal

flaws quickly become apparent. The overall system re-
mains consistent. This is an important contribution to
software quality.

Automated processes maintain flexibility. The evolution
of processes can be coordinated centrally, with only a
few engineers involved. Users are affected to a much
lesser degree.

A project of the magnitude of the Component Monitoring
System soltware development cannot be managed in a
reasonable way without a very high degree of automation.

Acknowledgments

The author would like to thank the engineers from the
operating system group, namely Martin Bufe, Kai Hassing,
Holger Kaun, Paul Kussmaul, and Wolfgang Schneider, for
their ingenious work on the operating system and the
development environment, as well as their professional
support for all application programmers.

© Copr. 1949-1998 Hewlett-Packard Co.

Component Monitoring System
Parameter Module Interface

This interface is the link between the component Monitoring System
computer module and the patient parameter modules. It provides fast
response, optimum use of the available bandwidth, configuration

detection, and parameter module synchronization.

by Winfried Kaiser

The parameter module interface of the HP Component
Monitoring System is the interconnection between the
computer module and the module rack. The module rack
can house a wide range and a varying number of parame-
ter modules. By means of transducers attached to the
patient, the parameter modules measure the patient’s vital
signs. These devices include the ECG, temperature, and
recorder modules, and many others.

The major challenges associated with the design of the
parameter module interface can be summarized as fol-
lows:

The system must be able to support communication be-
tween the rack interface card in the computer module
and a variety of parameter modules thal may differ in
such characteristics as the sampling rate of the analog
signal, the number of signal input or output channels, the
kind and amount of data that a parameter module re-
ceives from the computer module (control data) or sends
to the computer module (status data), and mechanical
size (1, 2, or 3 slots wide).

« It is a requirement of some clinical applications that cer-
tain waveform samples be measured and made available
at an analog output with an absolute delay of less than 20
milliseconds.

» It must be possible to plug any parameter module into
any slot in the module rack. The system must identify the
parameter module and its position within the rack (con-
figuration detection),

» The communication link of a system under power must

not be influenced by plugging in or unplugging parameter

modules or even entire racks.

The parameter modules must be synchronized with each

other.

» The link must support the detection of defective devices.

Link Design

The rack interface card in the computer module has one
connector to interface to as many as four module racks,
A module rack houses a maximum of eight single-width

Decoding Logic (Gate Array)
Parameter Module Interface I/"_,I, — I'!EEEE!I— N ________1:—_.
e e] e - e —
_u . ;.E ’-;_F — I ._._-._ =
RxM / S | ¥ I ___‘ o) (B0, =
TxM | ‘
: |
! et [1
Lo 1WA
| B 8ot | S S8
u L =
e
I_J |
‘ |
L] - -
BLACE
W = s = | T 8 i |
AxM) o | TM‘F 5V +W+ L l II ’l Fig. l: (%) Is:‘.'i'.il Imr;l.r_ur'h;r maod-
I yeus Lewe o 11 1 ules are -.ui.{n‘s:.r»d_ uhum_ll\-‘.- ad-
dress lines. Decoding logic
TXM & + GND « RxM TxM+ + GNO RxM connects the addressed module to
[the receive and transmit lines of
the rack interface in the computer
Module 1 > & o Module 8 module.

© Copr. 1949-1998 Hewlett-Packard Co.

October 1091 Hewlett-Packard Journal - 189

modules. This means that up to 32 parameter modules
can be attached to one rack interface card.

Connections are established to each of the 32 slots by
means of five address lines (see Fig. 1). Using these ad-
dress lines, the decoding logic in the addressed module
rack connects one of that rack’s slots to the receive and
transmit lines of the rack interface in the computer mod-
ule.

The serial interface of the 80C51 microcomputer (internal
UART, full duplex, 500-kbaud) is used for communication
between the rack interface card and the addressed param-
eter module. Because of the fast response time require-
ment, it was decided thai the parameter modules should
transmit their information one sample at a time. The rack
interface gathers all parameter samples over a period of
32 ms and forms them into the corresponding message
passing bus data.

Communication Protocol

The rack interface controller starts the communication
with the parameter modules with a special identification
cycle. All possible rack slots are addressed, and a special
control byte requests identification. A connected module
responds by sending its device identification, hardware
and firmware revision, and other parameter-specific data.

Using this identification and an internal reference table,
the rack interface
connected device types. This includes each device's sam-
pling rate and its number and kind of fransmit and re-
ceive bytes. After scanning all of the slots, the system

knows which parameter modules are available.

compiles all necossary data ahout the

Special digital logic together with a simple connected/
not-connected connector pin inside each parameter mod-
ule enables the rack interface o recognize whether or
not a module is plugged into any slot, or whether a mod-
ule is defective. If a parameter module is connected, it
responds when if receives the control byte from the rack
interface. If a module is not connected, the incoming byte
is sent back to the rack interface card without any delay.
If there is no response at all a defective module is recog-
nized.

Scan Table
After the system determines which parameter modules
are present, a scan table is generated in the rack inter-

face to deseribe and control all subsequent communica-
fion. The scan table consists of 16 2-ms time slices. The
table entry for each time slice specifies which parameters
are polled during that time slice (see Fig. 2).

The arrangement of the scan table depends on the speed
classes of the parameter modules connected. There are
five speed classes based on the sampling rate of the pa-
rameter modules: 2-ms, 4-ms, 8-ms, 16-ms, and 32-ms. The
2-ms parameters are entered in each column of the scan
table, the 4-ms parameters in every other column, and so
on. A special algorithm guarantees that the entries are
made so that each device is addressed at fixed intervals.

The free part of the scan table is used to address slots
that have no modules inserted. When a parameter module
is plugged into the rack it is immediately recognized and
activated in the scan table, which contains the superset
of all parameter modules that are allowed. A module that
is removed from the rack is deactivated. Thus it is possi-
ble to connect and disconnect any parameter module dur-
ing normal monitoring.

Analog output devices that need a fast response time are
entered at the end of each time slice and receive the data
from the selected parameter module within the same time
slice. The total delay from input to output is less than 2
ms (see Fig. 2).

Parameter Maodule Interaction

When a parameter module is addressed by sending it a
message (receive interrupt), it responds immediately by
transmitting a predefined internal data block, typically
consisting of waveform and status data. After the trans-
mission, the parameter module starts an analog-to-digital
conversion cycle of the patient signal or performs other
tasks depending on the control information in the re-
ceived message. The result of the analog-to-digital conver-
sion and status information are stored into a module’s
internal data block. This data is transmitted the next time
the parameter module is addressed. Since communication
with a particular device always takes place after a fixed
interval, the module can synchronize itself with this poll-
ing sequence.

At the 500-kbaud data rate of the parameter module inter-
face, a typical communication cycle with a parameter
module with one waveform takes about 120 microsec-

0 —2—4—6—B8— 10— 12— 14— 16— 18— 20— 22— 24— 26—26— 30 —32 = 0 —=Time (ms)

0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15
G
ECG| ECG | ECG | ECG | ECG | ECG| ECG | ECG | ECG | ECG | ECG | ECG | ECG | ECG | ECG | ECG
P1 P2 P1 P2 | NBP| P P2 | NBp| P P2 | ngp
sabz— 1 "R lap, Wl PN Sl Rl (ol TR B L
P3 Bl |es P3 P
— T2 = F— b
5 co — T5
T1
— Fig. 2. The scan table entries
specify which parameter mod-
ules are addressed in each of
sixteen 2-ms time slices. Ana-
log output devices that need
data immediately receive i
¢ |70 | A0 | A0 | AO | AO [0 [AO | AQ | AO | AO | AO | AO | AO | AO | AO | A0 bt sarae tipe-slive:
20 October 1991 Hewlett-Packard Jouwrmal

© Copr. 1949-1998 Hewlett-Packard Co.

onds. When communication with one module has been
completed, the next device in the scan table is addressed.

This procedure ensures both optimum use of the available
bandwidth and synchronization of the parameter module
and the rack interface card.

Summary

The parameter module interface represents a very flexible
solution for connecting a wide variety of modules to the
Component Monitoring System computer module. Al-

though the requirements addressed by the interface are
complex, the final implementation is both versatile and
rugged, and was kept relatively simple by integrating
some of the decoding logic.

Acknowledgments

I would like to thank Dieter Woehrle and Norbert Wun-
derle for their excellent contributions in developing and
implementing the parameter module interface and the
firmware for the parameter modules.

Measuring the ECG Signal with a
Mixed Analog-Digital
Application-Specific IC

Putting the ECG data acquisition subsystem into a Component Monitoring
System parameter module mandates high-density packaging and low
power consumption, and was only possible by implementing major
elements of the circuit in a large mixed analog-digital ASIC.

by Wolfgang Grossbach

Nearly everyone is familiar with one of the most impor-
tant medical parameters—the electrocardiogram, or ECG,
The electrical voltages created by the heart have been
well-known to the medical community for nearly a centu-
ry. In the beginning the ECG was measured by sensitive
galvanometers with the patient’s hands and feet placed in
vessels filled with saline solution. Improvements in the
assessment of diagnostic ECG signals have been closely
related to the evolution of electronics, great sirides being
made when amplifying devices such as vacuum tubes and
later transistors became available. Today, low-noise opera-
tional amplifier circuits are state-of-the-art for ECG signal
processing.

Physiologically, the polarization and depolarization of the
heart’s muscle mass creates a three-dimensional electrical
field that changes with time. As a result, voltages can be
measured on the surface of the body that represent the
pumping cycle of the myocardium. A strong effort has
heen made to standardize the points at which the volt-
ages should be measured. The most widely used are three
differential voltages: From right arm (RA) to left arm
(LA), from LA to left leg (LL), and from LL to RA. These
voltages are known as ECG leads I, II, and 1IL. The right
leg electrode (RL) acts as the neutral pole in this system.
This configuration is known as the Eindhoven triangle
(see Fig. 1).

ECG Signal Characteristics

The amplitude of the ECG signal as measured on the skin
ranges from 0.1 mV to 5 mV. The frequency extends from
0.05 Hz to 130 Hz. Physiological signals like the ECG dif-
fer from artificial signals in that they are not reproducible
from one fime segment to another. They are more statisti-
cal in nature and have larger variations in signal charac-
teristics than, say, a signal generator output. This places
additional requirements on the measurement system, espe-
cially the analog input stages. Although the average ampli-
tude is only around 1 mV, there are large de offset volt-
ages because of electrochemical processes between the
electrode attached to the patient and the patient’s skin.
These can be as high as £500 mV. Also, the contact resis-
tance between an electrode and the body surface can
vary widely and reach values around 1 M2, In addition,
the system must be capable of detecting that an electrode
has fallen off the patient. Perhaps the largest constraint is
the presence of 60-Hz or 50-Hz power line noise. The
human body acts like the midpoint of a capacitive divider
between one or more power lines and ground. Thus, com-
mon-mode voltages as high as 20V p-p can be superim-
posed on the body. Eliminating this source of noise is one
of the major tasks of an ECG amplifier. Fortunately, the
ECG signals are differential signals while the power line

October 1991 Hewlett-Packard Journal 21

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 1. Placement of ECG electrodes. The colors of the cabling
system are standardized. The right leg (RL) connection acts as the
neutral pole. (In manitoring applications the RL and LL connections
are often as shown here and not on the legs.)

voltages are common-mode, so the noise can be reduced
with differential amplifiers.

Another requirement results from artificial pace pulses
used to stimulate the heartheat of some patients. Pace-
maker devices are implanied into the chest, generating
small pulses up to 1V p-p at frequencies in the kiloheriz
range. Pace pulses are superimposed on the ECG signal
and have to be detected to differentiate them from the
peak value of the ECG signal, called the QRS complex.
This is important because the heartrate measurement is
based on this QRS signal, and an incorrect interpretation
would result in an incorrect value.

In emergencies when the heart stops beating (ventricular
fibrillation), a commonly used procedure is to apply a
voltage pulse of about 5 kV p-p with a 5-ms duration to
synchronize the neural stimulus of the heart's muscle
mass and bring it back to normal operating conditions.
Because of the high voltages needed to defibrillate a pa-
tient, the inputs of the ECG circuit must be protected.
Other sources of noise are electrosurgery devices, which
are used in operating rooms as electronic scalpels. These
devices contain high-frequency currents in the megahertz
range. The high current density at the tip of the electrode
coagulates the protein, thereby stopping bleeding. The
ECG module must provide additional filtering against this
high-frequency noise,

Integrated Solution

The design goals for the Component Monitoring System
ECG module included reduced cost, reduced size, mini-
mum power consumption, and increased reliability and
functionality compared to the current patient monitor
generation.

The target size was a single-width parameter module. This
module measures only 99.6 mm by 36 mm by 97.5 mm

22 October 1991 Hewlett-Packard Journal

"

(3.9 in by 1.4 in by 3.8 in). It was therefore obvious that
we would have to use surface mount technology to meet
the size objective. In addition, it soon became apparent
that a large percentage of the electronic circuit would
have to be integrated in silicon if the entire device was to
fit info a single-width module. This and the need for cost
reduction on such a high-volume parameter module as the
ECG module clearly indicated that an application-specific
integrated circuit (ASIC) would be the appropriate solu-
tion.

The investigation revealed that the chip size we had in
mind and the mixed analog-digital design were real chal-
lenges for a fully custom ASIC. Our plan was to integrate
the following function blocks into a single chip:

Full three-channel ECG amplifier with various filter

stages of both analog and switched capacitor type
Precision resistor network for the weighting function
Three-channel lead seleet multiplexer

Precision differential amplifiers with high common-mode
rejection ratio

Eight-channel multiplexer for sequential scanning of all
analog signals

Bandgap voltage reference

10-bit analog-to-digital converter (ADC)

Digital control logic for switching filter corner frequen-
cies, multiplexers, and other circuits

Serial interface to connect the chip with the surrounding
circuits.

To be able to integrate all this, a 3-um CMOS process
was chosen. It is a p-well LOCOS process with polysilicon
gates and ion implantation. NMOS and PMOS field-effect
transistors are combined. Also available are n-channel
JFETs and pnp bipolar transistors. The thin-film resistors
are laser trimmable to within 0.1% matching. Available
cells include JFET operational amplifiers, bipolar opamps,
switched capacitor filters, 8-bit to 14-bit analog-to-digital
and digital-to-analog converters, and sample-and-hold am-
plifiers.

The Electrocardiograph ASIC

The basic functions of the ECG circuit can be seen in
Fig. 2. which shows one of the three independent chan-
nels. The inputs are switched to the RA and LA elec-
trodes as active inputs. The RA and LA inputs of the chip
are connected to the patient. Protection circuits against
ESD and defibrillator pulses and current-limiting resistors
are provided outside the chip on the printed circuit
board. JFET input opamps amplify the signal five times
and act as high-impedance input buffers. A precision re-
sistor network (Wilson network) sums the various elec-
trode voltages to achieve the standard voltages for the
different ECG selections. The multiplexer selects the ap-
propriate lead voltages from the resistor network. The
10-kHz low-pass filters act as prefilters for anti-aliasing
purposes to reduce the high-frequency components in
case an electrosurgery unit or other high-frequency noise
source is coupling into the module, These are analog fil-
ters. They protect the switched capacitor filters with their
time-discrete sampling system against unwanted aliasing
disturbances resulting from high-frequency noise.

© Copr. 1949-1998 Hewlett-Packard Co.

JFET Input 10-kHz

Op amps Low-Fass To Pace Pulse
a3 Prefilters Detector
o— — B .

-
ot Lead &
Resiste Select L2
— > m -9 ——
A Ditferential
LA

Amplifier
RL

O

Right Leg
Drive

The RL input acts as the neutral pole, but is not directly
connected to analog ground. It is the low-impedance out-
put stage of an inverting summing amplifier (called the

right leg drive) which serves as a feedback circuit, further

reducing common-mode power line voltages. The com-
mon-mode signal present at the output of the lead select
multiplexer is phase inverted and fed back to the patient,
thus being subtracted from the common-mode voltage
present at the inputs. This helps eliminate unwanted pow-
er line noise.

The difference between the two selected electrode signals
is derived in the differential amplifier section, which has
a gain of one. Up to that point, all gain variations and
tolerances affect the common-mode rejection. Therefore,
these stages have laser-trimmed resistors where appro-
priate.

At the outputs of the differential amplifier in each of the
three channels, the signal path is split into two parts. For
the two main channels, the auxiliary path goes out of the
integrated cireunit to the pace pulse detector. The pace
pulses are identified by their higher-frequency content in
the range of 1 to 4 kllz, but only the presence of a pace
pulse has to be detected, not the time dependent signal
itself. Therefore, it is unnecessary to construct the whole
signal path with this large bandwidth. After the pace
pulse detector output, low-pass filtering of the ECG signal
begins.

For ECG filtering, a minimum lower corner frequency of
0.05 Hz is required. The large capacitor and resistor val-
ues needed could not be integrated and therefore the
signal is routed from the chip into external filter sections,
one for each charmel. By means of internal switches,
three low-end corner frequencies (0,05 Hz, 0.5 Hz, 3.5 Hz)
and two high-end corner frequencies (40 Hz and 130 Hz)
can be selected.

The signal flows out of the chip, through the external
filters, and back into the chip. It then goes through the
main gain stage, which has switchable gain of 40 or 160
depending on the signal amplitude and the resolution
needed on the screen. After passing the gain stage, the
signal is filtered with a second-order switched capacitor
stage to achieve the corner frequency of 130 Iz with as
small a tolerance as possible.

—~ External
P Pl Filter
s ol Components

o o

Switched
Capaciter
Filters

B -

Gain

E Stage

Fig. 2. Basic structure of the ECG
ASIC (one of three channels).

The three analog channels described so far are connected
to the inputs of a one-of-eight muliiplexer, which sequen-
tially scans these three channels and five auxiliary chan-
nels every 2 milliseconds. The output feeds into the ADC,
a 10-bit converter that has less than £1 LSB differential
nonlinearity and a conversion time of 20 us. An
S-by-10-bit dynamic random access memory holds all the
conversion results temporarily until they are transmitted
via a parallel-to-serial converter out of the chip to the
module microprocessor. In the opposite direction, all con-
trol information is transferred into the chip over this seri-
al interface and latched. The use of a serial data conver-
sion scheme made it possible to use only three output
lines and a 28-pin package.

Fig. 3 is a photograph of the ECG ASIC chip.
Pace Pulse Detection Circuit

The dual pace pulse detector is also an ASIC. lis analog
parts are built entirely in switched capacitor technology.

AN '

—

£ S ' =
i TTTITINNNNRT
S AT

x

Fig. 3. Photograph of the ECG ASIC wafer. The analog functions
cover mueh larger areas than the digital parts.

Octobor 1991 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

This had the advantage of avoiding laser trimming, mini-
mizing wafer area, and thus reducing cosl. This chip gen-
erates fwo logic output signals for each channel, indicat-
ing whether a pace pulse with either positive or negative
polarity is present in the input signal. The information is
polled by the microprocessor and sent to the algorithmic
software.

Test Considerations

It was clear from the beginning that testing the ECG chip
would be a challenge because of the large number of
parameters to be measured. The specifications describing
the functionality are split into two parts: internal and ex-
ternal specifications. The internal specifications ean be
tested with wafer probes and help the vendor optimize
the production process. They are consistent with the ex-
ternal specifications, which are measurable from outside
the chip and are accessible to the customer. The external
specifications are the link between the ASIC design and
the printed circuit board design and were used as guide-
lines throughout the design and verification process. Auto-
mated test equipment has been set up at HP to test the
ECG chip via its serial interface. The same test equipment
is used by both the vendor and HP to reduce the number
of false measurements resulting from different measure-
ment setups.

Results

Fig. 4 shows the printed circuit boards of the M1001 ECG
module. All components between the ECG ASIC (the larg-
er one) and the input patient connector are for protection
and filtering against defibrillator pulses, electrostatic dis-
charge, and electrosurgery units. The following table gives
an overview of the two ASIC chips (PPD is the pace
pulse detector):

24 October 19891 Hewlett-Packard Journal

Fig. 4. M1001 ECG module printed
circuit boards. The large capacitors
on the left board are part of the ex
ternal filter stages. The ECG ASIC
is just in front of these capacitors.
The PPD is to the lefl of the ASIC
The right. board contains the digital
parts of the module.

ECG ASIG

6.22 by 6.27 mm

PPD ASIC
3.43 by 3.99 mm

Item

Die Size
Analog Functions 24 12
Digital Functions 4 2

Number of Transis- = 6000 = 2000

tors
=200

=550

Number of Digital
Gates

28 PLCC

275 mW max.

Number of Pins 20 PLCC

Power Consumption 45 mW max.

Dynamic Range +3V +3V
Overall Analog Gain 800
Noise (referred to 2LSB

input)

The main problem that was faced in this design project
was the complexity of the system, which caused side ef-
fects that were not visible in the beginning. The die size
was too big for normal packages, so packages with larger
cavities had to be found. The simulation time was longer
than expected because of the large number of compo-
nents inside.

In summary, the design objectives were met. The ECG
performance is state-of-the-art, and significant reductions
in cost, power consumption, size, and component count
were achieved in comparison to a discrete solution,
which probably would have required a double-width
module.

© Copr. 1949-1998 Hewlett-Packard Co.

A Very Small Noninvasive Blood
Pressure Measurement Device

by Rainer Rometsch

The noninvasive blood pressure module of the HP Com-
ponent Monitoring System is a double-width parameter
module used to measure and calculate a patient’s systolic,
diastolic, and mean blood pressure. The method is based
on inflating a cuff on the patient’s arm until all blood
flow is suppressed in this extremity. The pressure in the
cuff is then slowly deflated, and by using the oscillomet-
ric measurement technique, both the high and low blood
pressures and the mean value can be determined.

Physically the noninvasive blood pressure module consists
of two parts. One is the electronic board, which contains
the power supply, the signal acquisition circuitry, and the
interface to the computer module. The other is the pump
assembly, which is responsible for the controlled inflation
and deflation of the cuff.

Requirements imposed on the pump assembly weare:
Low parts price

Minimum number of parts

Robust construction

jasy to assemble in the parameter module

Low power consumption at the highest possible pump
capacity.

Because of the required size of the pump assembly (it
had to fit in a single-width parameter module), and the
need to reduce the number of individual parts, a totally
new approach was taken in the design of this mechanical
part. The solution implemented is a self-contained Tune-
tion block allowing a stringent separation between the
electronic printed circuit board and the pneumatic system
(see Fig. 1).

The Pump Assembly

The pump assembly consists of the pump and two valves.
The pump is a membrane device driven by a de¢ motor.
To meet the requirements of the application, the pump is
optimized for high pumping capacity and low air leakage.
Air leakage is 2 big concern because the volume in the
cuff has to * ¢ leflated in a highly controlled fashion. This
is especiry difficult for neonatal applications, because
neonats: cuffs have very small volumes. We solved the
problem by incorporating a reflow valve within the pump
module. This pressure valve opens at low flow rates, and
therefore does not increase power consumption. The im-
portant thing is that it seals tightly at a very low reflow
rate.

Il assembly covers the entire blood pressure measurement
f e ults. The packaging of the air pump

assembly makes several contributions to the objectives.

Fig. 1. Pump assembly of the Component Monitoring Systern nonin
vasive blood pressure measurement maodule

The second element in the pump assembly is a pair of
valves, flanged to a machined aluminium extrusion. Two
valves are needed to provide a fail-safe circuit that will
comply with the safety requirements imposed on noninva-
sive blood pressure measurement devices. These two
valves have considerably different Mow characteristics, By
automatically switching between the two valves, one non-
invasive blood pressure module covers the entire applica-
tion spectrum from neonates’ cuffs all the way to adult
thigh cuffs.

The aluminium extrusion is designed to replace all the
necessary tubing between the pump and the valves. It is

October 1991 Hewlett-Packard Journal - 25

© Copr. 1949-1998 Hewlett-Packard Co.

therefore possible to flange the mounted valve onto the
pump without any additional rubber tubing. This contrib-
utes to a part count reduction and simplifies production
dramatically.

The only connections that have to be made with the
pump assembly are a 15-mm-long rubber tube to the non-
invasive blood pressure connector in the parameter mod-
ule, and a power connection to the electronic board for
the de pump. The rubber tube to the noninvasive blood
pressure connector is essential because this flexible tub-
ing detaches the pump from the the parameter module
housing and thus helps damp acoustic noise caused by
mechanical vibration.

Packaging

The entire pump assembly is encapsulated in a polyure-
thane package. This relatively simple part contributes in
more than one way to the goals of the overall solution.
All noise generated by the de pump is muffled by the
package to a degree that is acceptable in the hospital
environment. The pump assembly survives the 1-m drop
fest because sufficient kinetic energy is absorbed by the
package to avoid damage to the mechanics. Packaging of

this part for shipment from the vendor to HP has been
minimized to a simple protective cover.

The outline of the foam package is identical to the inner
contour of the parameter module. Therefore, no additional
parts are needed to embed the pump assembly in the
inner enclosure of the parameier module. The elimination
of additional screws or clamps has helped reduce produc-
tion time and part count.

Conclusion

The Component Monitoring System noninvasive blood
pressure module meets all of the above described objec-
tives. Because the pump assembly and the electronic
board are delivered as prefabricated parts, the total time
to build the module has been reduced to about two min-
utes. The result is a small, robust, self-contained noninva-
sive blood pressure module, to our knowledge one of the
smallest noninvasive blood pressure devices in the world.

Acknowledgments

The author would like to thank the materials engineers,
Eberhard Mayer and Willi Keim, for their continuous sup-
port and professional advice.

A Patient Monitor Two-Channel
Stripchart Recorder

Small enough to fit in a double-width HP Component Monitoring System
parameter module, this recorder embodies simplicity of design, a highly
tooled mechanism, and sophisticated printhead power management.

by Leslie Bank

The medical environment requires a record of the care
that has been given to a patient, both for the patient’s file
and as a legal document. For patient monitoring equip-
ment like the HP Component Monitoring System, the re-
cord has traditionally been a continuous sirip of paper of
various widths. An example of a recording from the Com-

(9800AY TEST DATA 25 mm/sec Tskin 4@ 0

29 JaN 91 12:30 BED z@ T2 429 1
Tsk-T2 0.0

ALARMS SUSPENDED

HR 6@

5T -2 B ClLead 112}

ST2 R 9 f(lead V) Is¢ = -8@ ms, ST P{ = 188 ms v

PULSE &8
ABP 120/70 €911
PAP 3B/17 (23>
CVP (93
PAWP -7-

Fig. 1. Typical two-channel stripchart recording of patient data

26 October 1991 Hewlett-Packard Journal

ponent Monitoring System'’s two-channel recorder is
shown in Fig. 1. Fig. 2 is a photograph of the recorder.

In the pasi, the hospiial had three options to provide re-
cording capability for a patient, each of which was less
than ideal:

© Copr. 1949-1998 Hewlett-Packard Co.

L]

L]

-

Fig. 2. The HP Component Monitoring System two-channel recorder
module

Purchase a recorder for every bedside. This is very ex-
pensive in these days of cost containment.

Use a central, shared recorder. With much of the patient
care given at the bedside, not having a recorder nearby is
a distinet disadvantage.

Mount the recorder on a cart and wheel it to the bedside
when needed. This takes up too much of the available
room at the bedside and is also inconvenient,

The Component Monitoring System philosophy of allowing
the monitor configuration to change with the patient’s
needs extends to the recording function. The two-channel
recorder can be moved around like any other parameter
module. This approach, along with the requirements for
ease of use, high reliability, high performance for many
types of applications, low manufacturing cost, and low
power led to the following set of major specifications:
Size: Double-width parameter module

Power consumption: Approximately 6 watts maximum
Number of waveforms: 3

Lines of character printing: 3

Paper: 50-mm-by-30-m rolls (fan-fold paper would not fit

in the desired package size).

These specifications resulted in a number of major techni-
cal challenges.

Size. Fitting the paper. motor and drive mechanism, elec-
tronics, and supporting structure into a package of this
size was a major accomplishment.

Power Consumption. Chemical thermal paper is used in this
recorder. A printhead consisting of a linear array of resis-
tors is in constant contact with the paper. When power is
applied to one of these resistors, the resistor gets hot and

a mark is made on the paper. This, combined with the
power requirements of the motor and electronics, normal-
Iy would require much more power than the 6 watis that
are available. In addition, there can be no ventilation in
the housing. Meeting the high-temperature specifications
was difficult because of the internal heat generated by
the power-consuming components.

Ease of Use. Recorder operation should be flexible to meet
the various medical applications. It should be intuitive for
the occasional user. Most of the Component Monitoring
System recorder operation is parf of the normal control
structure. The difficulty for the recorder design team was
to make the paper loading easy while not using any pow-
er to aid paper feeding.

Reliability. Recorders, which have moving parts that wear,
tend to be less reliable than equipment that does not
have moving mechanical parts. A simple mechanical de-
sign along with high-quality components and a severe
testing program resulted in a highly reliable product.

Manufacturing Ease. This recorder was designed for
high-volume assembly. Much effort was spent in minimiz-
ing part count, in using the molded parts to perform mul-
tiple functions, in designing adjustments out, and in mak-
ing the instrument easy to test.

Mechanism

Paper is loaded by opening a door and inserting the roll
of paper into the paper compartment. The paper is then
threaded around a drive roller and pulled taut, and the
door is closed. As the door is closed, a cam is engaged
which lowers the printhead. The roller is driven by a
stepper motor which is connected to the drive roller by a
drive belt. The roller is driven when the motor furns. The
paper has enough wrap around the drive roller to ensure
that it can be driven under the printhead. Enough back
tension must be provided to make the paper track proper-
ly, yet too much tension increases the motor torque re-
quirements, which in turn increases the power required.
This turned into an interesting design trade-off. Sealed
ball bearings are used on the drive roller to minimize
power requirements while keeping paper dust out of the
bearings.

Two injection-molded frames form the chassis, The print-
head and drive roller are captured between the chassis
halves, while the motor, paper door, power supply board,
and digital board are all mounted to the outside of the
chassis. The entire assembly is enclosed in a double-
width module case.

Electronic Hardware

The digital board contains two Intel 80C196 16-bit micro-
controllers which communicate with each other via a
shared RAM. Each microcontroller contains a serial port.
The /O processor uses its serial port to communicate
with the monitor's computer module via the parameter
module interface (see article, page 19). It receives digital
commands, waveforms, and text data from the monitor. It
interprets the commands and transforms the data into a
format compatible with the printhead. It also monitors the
front-panel and door-open switches and the paper-out sen-

October 1991 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

sor. The /O processor communicates the recorder status
to the monitor.

The other processor takes the information from the /O
processor and ships it to the printhead via its serial portl.
The energy applied to each resistive dot in the printhead
is tightly controlled by varying the printhead strobe times.
This ensures high-quality printing and long printhead life
with minimal energy use. This processor varies the print-
head strobe based upon printhead temperature, resis-
tance, and voltage, which are measured by the onboard
analog-to-digital converter. The motor speed data is also
sent to the motor drive chips, which are located on the
power supply board.

The power supply board transforms the 60 volts received
from the monitor into 15 volts required by the printhead
and motor, and into the 5 volts required by the logic. This
power conversion is performed by a switching power sup-
ply with a typical efficiency of 83%. The motor is driven
by two stepper motor chips which, under control from
the digital board, microstep the motor to provide accurate
chart speed with minimal power. The peak energy
supplied to the printhead is provided by a large capacitor.
In case of extremely heavy printing, the power to the
printhead may sag. To prevent the 15-volt supply from
sagging too much, a current limiter is placed between the
printhead energy storage device and the 15-volt supply.
Finally, the optical isolators for the serial data lines to
the monitor are on this board.

Printhead Control

Character and grid generation are provided by the record-
er. The selected characters and grid are combined with
the waveform data, rasterized, and sent to the printhead

28 October 1991 Hewlett-Packard Journal

to energize a number of resistors (dots) in the printhead.
The printhead is loaded three times for each dot printed.
If the dot has not been fired and is “cold”, it is fired for
all three loads. If the dot has been fired in the last cycle,
it is “hot” and is fired for only one load. If the dot has
been fired two cycles ago, it is “warm” and is fired twice.
This results in a historical firing of each individual dot
and precise temperature control of each dot. In addition,
each of the three loads is accompanied by a strobe of the
printhead. Each strobe time is varied based upon print-
head voltage, temperature, resistance, and chart speed.
For example, as the temperature of the printhead in-
creases, the amount of energy provided to all dots de-
creases. This results in a lower printhead temperature
rise and less thermal shock to the dot resistors, while
providing consistent printing quality. In addition to all
this, the entire printed area is dithered up and down over
time. This equalizes the use of all the printhead resistors
and improves the life of the printhead.

Acknowledgments

The techniques presented here have resulted in an effi-
cient product design that builds upon the strengths of the
Component Monitoring System. The simplicity of design,
highly tooled mechanism, sophisticated printhead power
management techniques, and much testing have resulted
in a reliable, high-performance yet cost-effective solution
for our customers. Much effort and hard work went into
making this product happen. I cannot hope to thank ev-
eryone involved on the recorder project, but I would like
to give special thanks to Gerry Patrick, Renee Olson,
Walter McGrath, Chris Rothwell, Jeff Berry, Dominic Luc-
ci, Harry Schofield, and Jim Larsen.

© Copr. 1949-1998 Hewlett-Packard Co.

Patient Monitor Human Interface

Design

A design based on human factors leads to an intuitive and easy-to-use
human interface for the HP Component Monitoring System.

by Gerhard Tivig and Wilhelm Meier

The design of the human interface for the HP Component
Monitoring System involved a coordinated effort of R&D,
marketing, and indusirial design, working with valuable
inputs and feedback from the principal users—the inten-
sive care unit (ICU) nurse and the anesthesiologist. Fig. 1
illustrates the basic elements of the design process for
the human interface.

The functionality of the Component Monitoring System
goes beyond the classical real-time patient monitoring
functions. The monitor offers extensive support for medi-
cal procedures, such as cardiac output and S-T depres-
sion and elevation measurements, a powerful data man-
agement capability with various calculation and report
facilities, and a review facility for alarms and patient in-
formation from “another bed” using the proprietary P
serial distribution network (SDN). This functional com-
plexity had to be handled with a single consistent and
simple operating structure so that it did not lead to a
complex user interface. Because it is a key element in the
user’s ultimate buying decision, usability was a critical
issue in the design.

© Human Interface Task Force
® Clinical Inputs (Nurses, Doctors)

© HP Human Factors

Concepl for Conlrol Structure and

Screen Layout

la

.
|

v

o Usability Test

- Hifsim
Tool

® User Advisor Inpuls

S
e oen

Human Interface
ERS Freeze

Final Screen Cookbook

Fig. 1. Design process for the human interface of the HP Compo-
nert Monitoring Svsterm.

Environments and Users

The Component Monitoring System is used in a variety of
environments, including the surgical ICU, the neonatal
and cardiology ICUs, and the operating room. There is a
wide spectrum of users, including the nurse in the 1CUs
and the nurse anesthetist, the anesthesiologist, and the
perfusionist in the operating room.

The primary user in the operating room is the anesthe-
siologist. Some of the tasks performed are of a clerical
nature, such as logging patient and life support device
data, observing the monitor, and scanning the area. There
are also physical tasks, not directly related to the moni-
tor, such as patient preparation, administration of drugs
and fluids, and patient observation.

In the surgical and neonatatal ICUs, 90% of users are
nurses. The tasks performed by the nurse include 30%
clerical activities, such as recording medical data, writing
down and checking doctors’ orders, writing down the
medication plan, and filling out the patient’s flowsheet.
The other T0% of the tasks performed are of a physical
nature, such as administering fluids and drugs, taking
measurements, making physical examinations, ensuring
patient hygiene, and performing medical procedures.

In most cases, nurses and physicians have no computer
experience. It can be expected that many of them will
have doubts about the introduction and use of comput-
er-based monitoring equipment. Therefore, it was consid-
ered advisable not to make the Component Monitoring
System look like a computer.

The main focus is on the patient. The nurses and the phy-
sicians do not have time fo interact extensively with the
monitor. They are in a crowded and stressful environ-
ment, where it is not unusual to encounter critical situa-
tions requiring immediate action to prevent degradation of
the patient's situation. Clinical personnel also face a wide
variety of equipment from different manufacturers, all
with different user interface standards.

Equipment training often includes no more than one or
two hours of instruction at monitor installation time. The
turnover of the nursing staff may be very high. Because
the workload is heavy, there is no time to read extensive
operating manuals, instruction cards, or help texts. Be-
cause of economic pressures on the health care system

October 1091 Hewlett-Packard Journal -~ 29

© Copr. 1949-1998 Hewlett-Packard Co.

and eclinical personnel shortages, especially in nursing,
less time is available for in-service training.

All of this suggests that intuitiveness and ease of use are
fundamental requirements for the Component Monitoring
System human interface.

Design Objectives

As the performance and computational power of a patient
monitor increase, the challenge is how to present and use
the medical information provided by the monitor in an
easy-to-interpret, simple, interactive way that will lead to
more efficient patient care delivery. It is possible to con-
trol a monitor with two buttons and a lot of key pushing
and watching. It is also possible to have 100 buttons or
more for the same job and assign a distinct function to
each button. An optimum is somewhere in between.

The main goal was to design a consistent control struc-
ture for all applications in the monitor and across all
present and future members of the Component Monitoring
System family. Working towards a simple model in the
user’s mind was considered more important than reducing
the number of keystrokes required to access a given func-
tion to an absolute minimum. Having formed a model of
how the system operates, the user can extrapolate how a
particular function might work. If the system is consis-
tent, the user's prediction will work, the system will be
perceived as easy to use, and user acceptance and satis-
faction will increase. The control structure needs to be
sell~explanatory to the novice user and allow fast access
to the experienced user. Access to critical [unctions re-
quiring immediate action (like silencing an alarm or freez-
ing the screen) should be simple and fast and should not
interrupt the user's activity in a given operating window.

Minimizing operating complexity by reducing the number
of nested operating levels and thus eliminating the need
for “navigation aids” has been a major quantitative goal.
Each Component Monitoring System function is accessible
within three operating levels, reinforcing the same access
to all functions, There is a home key, labeled Standard Dis-
play, which always brings the user back to the standard
resting display. Because monitoring functions vary in their
complexity, the human interface design implements simple
things in an easy way while making complex tasks possi-
ble.

Elements of the Human Interface

The main elements of the Component Monitoring System
human interface can be seen in Fig. 6 on page 12. All
user interaction and data visualization take place through.
a human interface unit consisting of a 14-inch high-resolu-
tion display (monochrome or color) and a keypad inte-
grated in the sereen bezel. Optionally, a remote keypad
can be attached to the Component Monitoring System
through the standard HP-HIL interface. The remote key-
pad duplicates all of the keys on the screen bezel and
has an additional alphanumeric entry capability. The
screen bezel also contains the sound generator for the
alarm interface and the visual alarm indicators, which are
color-coded alarm lamps (red, yellow, green). The controls
and lights on each patient parameter module are inte-
grated into the overall operating concept. Each

30 October 1991 Hewlet-Packard Journal

single-width parameter module has one or two keys. One
key is always a setup button, which allows direct access
to the setup menu for that parameter module. The other
key is optional and allows quick operation of functions,
such as zeroing a transducer, starting a cardiac output
measurement, or calibrating the CO, analyzer.

Most operations are controlled by a mix of twelve hard-
keys and seven softkeys. A group of arrow keys on the
right side of the keypad (up, down, left, right, confirm)
support the pointing and select functions of the user in-
terface.

Hifsim and Its Benefits

The control structure and the screen layout were exposed
to nurses, physicians, and anesthesiologists in the early
stage of the design process. This was possible through
the use of a simulation tool.

Al the time the human interface design started, very few
simulation tools were available, and in most cases they
didn’t match the designers’ requirements. We chose 1o
develop our own simulation tool, called Hifsim, This took
four engineer-months. Iifsim runs on an HP 9000 Series
300 workstation under the HP-UX operating system.

The intended use of the Hifsim tool for usability tests
made it mandatory to come up with a keypad integrated
into the screen bezel to resemble as much as possible the
way a nurse would interact with the monitor. Similar pix-
el resolution and useful screen size to that of the final
monitor were mandatory.

Special hardware was developed for the simulator. It con-
sists ol a metal cover over the workstation’s 19-inch dis-
play, leaving an opening similar to the Component Moni-
toring System’s useful screen area. An HP-IL button box
was modified as a keypad replacement and was inte-
grated into the cover. The electronics of the button box
were used to connect a set of hardkeys embedded into
the screen bezel, forming a close approximation of the
final screen bezel layout (see Fig. 2).

Hifsim has two main sections: the screen generator and
the simulation section. The screen generator is basically a

il

Fig. 2. The Hifsim simulator hardware interface resembles the Cone
ponent Monitoring System’s

© Copr. 1949-1998 Hewlett-Packard Co.

.

compiler that interprets the Hifsim screen definition lan-
guage and converts it into commands for the HP Starbase
graphies software. This language is adapted to the charac-
teristics of the planned Component Monitoring System
display hardware in terms of resolution, character sizes,
fonts. colors, and special graphic elements.

The benefits of the screen generator are:

Serves as a screen design tool

Ensures consistency in screen design

Enabled early selection of the Component Monitoring
System color scheme

Generates “screen cookbook”

Supports usability tests

Aids in software implementation

Supports trade shows, demonstrations, and training.

Both sections of Hifsim are data driven. This means that
the sereen and operating dependencies are described in
files. Every change in the screen content or operating
sequence is implemented by editing these files while Hif-
sim is running. This supports the idea of interactive
screen design and makes Hifsim a true screen design
tool.

The monochrome version supports two intensities of
green. Up to eight colors can be used in the color version
of Hifsim. Each color can appear with full or half intensi-
ty. Again, similarity to the final display hardware attri-
buies was mandatory for the simulator, and the color
map of the workstation made it possible to generate any
desired color. This allowed us to come up with a good
definition of the Component Monitoring System color
scheme under the restriction of the available hardware
very early in the human interface design process.

Building a screen means specifying the screen objects
along with their attributes in terms of color, size, posi-
tion, line style, and so on. The ability to define wavelorm
objects in terms of wave amplitude, trace length, position,
and color was essential for the proper design of the real-
time waveform display. The screen definition language
supports primitives for text, waveforms, rectangles, size
bars, value and alarm bars, lines, and polygons.

Hifsim made it possible for the human interface design
team to visualize and distribute the screen design in the
“screen cookbook”, which is a collection ol about 200
screen hardceopies bundled together to illustrate the Com-
ponent Monitoring System human interface design. The
cookbook was an essential element in the human inter-
face design process. It was used to get clinical user and
HP management feedback and approval very early in the
design process.

The effort spent in building Hifsim was repaid during the
implementation of the human interface software. All
screen definition details were used in the actual soltware
implementation with virtually no changes. The implemen-
tation of the interface’s task window command language
resembles the primitives used in the Hifsim scereen defini-
tion language.

The basic functionality of the Component Monitoring Sys-
tem was developed jointly with the HP Waltham Division
in the U.S.A., and Hifsim was used there as well for
sereen designs and simulation in parallel with the R&D

effort at the Boblingen Medical Division. This helped
achieve inherent consistency. Because the same tool was
used to generate all of the Component Monitoring System
screens, the screens' look and feel are consistent across
all Component Monitoring System functions.

Hifsim was used widely in exposing the human interface
design during shows, demonstration sessions, and market-
ing training at a time when no finalized Component Moni-
toring System hardware or software was available. This
allowed the design team to get very early feedback on its
user interface design.

Usability Testing

Hifsim was a prerequisite for being able to set up the
Component Monitoring System usability tests. The pur-
pose of the usability tests was to discover which features
of the human interface design were effective and which
needed to be improved, and to do this testing early in the
design process where changes could still be made in the
human interface design.

An extensive usability test session was organized in the
Boston area by an independent research institute that
specializes in human interface studies and human factors
research. Our objective was 1o conduct an independent
evaluation of the monitor’s user interface, basically the
control structure and the screen layout. The test was con-
ducted on a sample of 13 nurses and anesthesiologists
who were asked to perform typical patient monitoring
tasks. A second objective was to assess the value ol us-
ability tests as an aid to the design process of a monitor's
user interface.

A game plan was worked out that included a list of 30
different scenarios commonly performed by the clinical
personnel in operating rooms and the ICUs. The test ses-
sions were conducted by a moderator who first read the
task scenario and then asked the test subjects to perform
it. All sessions were videotaped and members of the
Component Monitoring System R&D and marketing teams
watched them in a separate room. This way the design
engineers gol [irsthand insights into user reactions to the
human interface.

Before each session the moderaior gave a very brief ex-
planation about how the monitor works. This demonstra-
tion was kept to a minimum to test how easy it would be
for a nurse to operate the monitor with almost no pre-
vious fraining. The test subjects were asked before the
test what functionality they expected to activate with
each hardkey. In this way we got more feedback on how
infuitive the Component Monitoring System keypad label-
ing was.

At the end of each session the test subjects were asked
to pretend that they had to frain the moderator to do a
simple procedure, such as changing the leads on the ECG
or adjusting the pressure alarm limits. The purpose was
to see if they could recall the procedure they had per-
formed about an hour ago. This was a measure of how
well they had learned and how well they understood the
operating concept.

The general assessment was that the Component Monitor-
ing System user interface is sound, easy to learn, and

October 1091 Hewlett-Packard Journal - 31

© Copr. 1949-1998 Hewlett-Packard Co.

effective to use. A significant number of recommendations
and problems were found, many of which had not been
reported in previous tests with clinical specialists and HP
employees. For example, the monitor has a function that
allows the user (o activate or suspend the monitor’s
alarming capability. This function was implemented in the
prototype as a toggle key. To suspend alarms, the user
had to press a softkey labeled Suspend Alarms. The label
then changed to Activate Alarms and an ALARMS SUSPENDED
message appeared in the upper part of the screen. The
subjects frequently overlooked the message. They were
therefore confused to see the softkey label changing to
Activate Alarms. They were not sure whether the alarms
were on or off. Even with extensive explanations, they
had trouble understanding the functionality of the toggle
softkey. Because this is a critical function that involves
patient safety, we separated this function into two sepa-
rate softkeys.

The recommendations from the usability tests were incor-
porated in the human interface design and new tests were
conducted. After these were successfully passed, the hu-
man interface ERS (external reference specification) was
finalized.

The usability tests were an essential milestone in the hu-
man interface design process. However, the tests only
evaluated the system’s ease of learning and initial ease of
use. They did not evaluate how users would feel about
the monitor after they had used it on a daily basis. The
basic difference is that users who know the monitor don’t
read labels anymore. They simply push keys in a “pre-
stored” sequence. This emphasizes the importance of con-
sistency in the Component Monitoring System human in-
terface design. In addition, these tests did not reflect how
the user would interact with the monitor in a clinical
environment, in critical situations where fast access to
some basic functions is essential. Let’'s come back to the
example of the suspend/activate alarm function, finally
implemented with two softkeys. After release of the Com-
poneni Monitoring System, we found that users in the
operating room require a one-push key to suspend or acti-
vate the monitor's alarms. This is the way they are used
to operating other monitoring equipment. In addition, hav-
ing direct access to the alarm suspend function helps the
user whenever special procedures are done on the patient
that require alarm suspension. This led to the decision to
add a hardkey on the keypad for the suspend/activate
alarm function.

The verification process did not stop here. Tests in the
clinical environment were conducted in the U.S.A, and
various European countries before release of the Compo-
nent Monitoring System to assess its usability and to test
specific monitor functionality. With each Component Mon-
itoring System release, further fine tuning of ease-of-use
aspects has been done, but the main operating concepts
have proved sound.

Designing for Ease of Use

To ensure intuitiveness and ease of use, a number of de-
sign decisions were made for the human interface of the
Component Monitoring System. These are discussed in
the following paragraphs.

32 October 1891 Hewlett-Packard Journal

Intuitive and Explicit Labeling. The human interface always
uses verb+noun combinations as softkey labels (Change
Lead, Adjust Alarms, Select Parameter). If always uses nouns or
objects for functional entries on the keypad (Parameters,
Patient Data, Monitoring Procedures).

In the past each front-panel control had one function,
which needed a label for explanation. To keep the prod-
uct’s appearance unconfusing, it was necessary to abbre-
viate labels. This made them hard to interpret and to lo-
calize. The function of a key is much clearer if both a
verb and a noun are part of the label. Then the control
clearly does “something to something”.

All function keys act only as softkeys—they don’t have an
additional meaning as a hardkey. There is always only
one function assigned to a given control. There are no
hidden functions and no automatic screen actions, which
are perceived as unexpected, are not obvious to the user,
and require extra training effort.

Task Window Appearance. All task windows or setup
menus have the same layout and appear in the same posi-
tion on the monitor's screen. All information needed to
perform a given task is included in this window. The win-
dow height is a function of the amount of information
that has to be presented. However, the basic design goal
was fo keep these windows as small as possible to mini-
mize the amount of screen they cover.

Screen Eye Movement. The most critical information, such
as patient alarms, is placed on the top right side of the
screen. Because the vital sign numerics are critical for
the patient status assessment, they always appear on the
right side of the screen. Prompts and status messages are
always shown in the top middle portion of the screen.

Context Sensitive Help. The Component Monitoring System
help function is intended to replace the traditional in-
struction card. Upon request (pressing the Help hardkey)
the system provides one or two lines of information
about the functionality of the currently activated softkey
or choice. In the case of mullistep procedures a more
detailed description of the procedure steps is shown as
permanent help inside the operating window. None of the
help components hides the currently active task window.

Consistency. This issue is critical for the ease of use of
the monitor. The same functions are kept on equivalent
keys across different operating windows (e.g., the Adjust
Alarms function is always the rightmost softkey in any
parameter task window). The same wording is used for a
function that appears in several windows (e.g., Change
Scale is used as a softkey label whenever a change in a
parameter’s amplitude is implemented). All softkey labels
are printed with an initial uppercase character followed
by lowercase letters. Highlighting is always used to indi-
cate that a given field is currently active. Blinking is al-
ways used to indicate that an alarm condition is present.
Operating the monitor from the screen bezel or the re-
mote keypad is the same. All bezel keys appear in the
same layout on the remote keypad. Rules and guidelines
ensure that application software modules present task
windows in a consistent way. This applies not only to the
run-time task windows but also to all parameter configu-

© Copr. 1949-1998 Hewlett-Packard Co.

ration windows. All have similar appearances and identi-
cal controls.

Color. Color is additional and redundant and never used
as the only coding scheme. Color is used basically to dif-
ferentiate real-time waveforms displaved in an overlapping
fashion. Pieces of information that belong to one parame-
ter source (such as the real-time waveform, numerics, and
the trend wave) always have the same color. All operating
windows have the same color (cyan) and all softkey la-
bels are white on cyan. Alarm severity is expressed in the
colors of the alert messages. Life-threatening alarms are
in red, caution or warning alarms are in yellow, and inop-
erafive conditions are shown as green messages. A red
X-bell symbol is used throughout the system to indicate
that alarms are turned off.

Avoiding Operating Errors. All choices for a given function
are always shown. There are no hidden choices. The sta-
tus of a given setting is shown before a change is initi-
ated. Prompt messages and prompt sounds are used to
inform the user if an action cannot be executed properly.
Actions like pressing Confirm or finishing multisiep proce-
dures (e.g., zeroing a pressure line) always result in a
prompl message and sound.

Graphics. In addition to digital readouts, graphic elements
are widely used. This includes size bars for amplitude
adjustments and audible volume control and alarm and
value bars to indicate the current range of alarm limits.

User Defaults and Configuration Sets. The basic design goal
is that it be possible to turn on the monitor, attach the
transducers and electrodes to the patient, and start moni-
toring without any further settings or adjustments. This
means that the monitor will initiate at power-on with a
set of user-definable settings. These user defaults can be
specified at installation time and changed whenever re-
quired. They are stored in nonvolatile memory and read
after monitor restart. This applies to every parameter
module in the Component Monitoring System.

In addition, a whole set of user settings related to one
specific Component Monitoring System element, such as
the display or the recorder configuration, can be bundled
together and accessed by a single keypush. For example,
all screen related attributes, such as waveform assign-

WILHELM MEIER BED 1 Adull 25 JUL 91 12,00
i thanc active - MD ITOR NG ST -0
H R ‘u -#m _F: 1 |L60 T2 o9

Fewse 40

tmy

PN S~ 20070 (91)

-]
eAP

pas]
—_— -~ 3ulY (23)
CvP 30 EE]
._._.—-—\3,._.—-—\.._,,_- NBI; HKS&
- - ~ - . Sa0; 115/6
Ff&:“ Vd \‘./ \'f \r \‘/ \‘/ i - ki /\IDU m(uT9]533
oo ETCO, e g?m
e el v R et B i U R i ==t ,—40 T 400
__I l__f Py I ._I l_ re-1 . J l_ i mea, 0 :j :ED

Fig. 3. Typical resting display.

ment to display channels, number of waveforms, speed of
waveforms, and overlapping formats, can be put together
as one screen choice. Up to three different screen
choices can be stored in nonvolatile memory. This sup-
ports applications in the operating room, where depend-
ing on the course of surgery, specific screen layouts have
to be accessible without complex interaction.

Finally, the concept of a configuration set supports the
monitor’s ease of use and flexibility by customizing the
parameter algorithm behavior and the parameter settings
according to the specific environmeni (operating room or
ICU) or to the patient’s age (adult, pediatric, or neonate).
The user can specify or change the monitor's behavior
simply by selecting one of the four available conliguration
sets prestored in the monitor. This again simplifies the
monitor’s sefup in an environment like the operating
room, where patients of different ages undergo surgical
interventions.

The Resting Display

The resting display is what the Component Monitoring
System shows when no user interaction is taking place.
Fig. 3 shows a typical resting display.

Since the monitor’s main task is to measure a patient’s
vital signs and give an alarm if a critical situation occurs,
the top line is reserved for alarm information. It also con-
tains the patient’s name, the current date and time, and
the basic configuration of the monitor—for example, a
classification of the patient and the application area for
which the internal algorithms are optimized.

The next line contains status and prompt messages in-
forming the user about events that are not as critical as
alarms, but give information about such things as suc-
cessfully finished recordings or parameter calibration pro-
cedures.

Depending on the Component Monitoring System configu-
ration and the user’s choice, the resting display shows
four, six, or eight real-time waveforms of the measured
parameters with the digital values derived from the wave-
forms displayed next to them. For better vertical wave-

Parameter Module
_ Setup Key Pressed

-~ ~—
- Key on Internal
Standard |
Displey Keypad Pressed
Pressed
S i |
Standard Selecta |
| Display Task
Pressed [
| Function [
i Key Pressed |

Perform a Tagk

|
\ vy
~ =

Fl.{nciron Key

Fig. 4. General operating structure,

October 1991 Hewlett-Packard Journal - 33

© Copr. 1949-1998 Hewlett-Packard Co.

mOom (IC 1 JC i |

r 5;=n:!!] Monitating
adad

| Suspend

[| [

Standard Caplure Ttk [Record i
Display Green Event

| T ""“.*\ L Canfitm l ‘

Inatryment l | Patiznt B \ “?
Il
Config | | Procedures || Data i 4 \\\\/—-’/
/\.

=

form resolution, up to two groups of waves can share a
larger sector on the screen. This overlapping of wave-
forms allows the user to correlate different waveforms on
the time axis.

Each waveform channel can be assigned a different
speed. Two presentation modes of the waveforms are
possible: either the waveforms are fixed on the screen
and old waveform samples are erased by the newest, or
the waveforms move across the screen with the newest
samples always next to the digital values.

The content of each channel can be configured. Addition-
ally, the user has the choice of three preconfigured
screens to make it possible to adapt quickly to changes
of the patient’s condition.

Digital Values
The user has definite expectations about where, when,
and in what format digital values should appear. The re-

quirements for the arrangement of the digital values were:

The values of a parameter plugged into a rack or turned
on should show up automatically. It is unacceptable to
have to position the value of such a parameter manually.
It must appear in the right position.

The digital values must be placed next to their corre-
sponding waveform if possible.

As many values as possible have to be shown with large
digits. On a full display it is acceptable for the less-impor-
tant values to be shown with small digits, but not on a
display with just two measured parameters.

These requirements are met by an elaborate algorithm. 1i
is an iterative process that tries to find a place for all
digital values available in the system. It first places all
values next to their waveforms with large digits. It then
places all other values, according to a priority list, in the
right column next to the waveform values. Temperature
values are first assigned large digits.

If there are still unassigned numerics left but no more
space available, the algorithm starts decreasing values in
size, starting with those of lowest priority, and repeats
the process. As a last resort, temperature values are al-
lowed to share the same place, alternating at two-second
intervals.

Operating Concept

The general operating structure of the Component Moni-
toring System human interface is described by the state
diagram shown in Fig. 4.

34 October 1901 Hewlett-Packard Jouwmal

Fig. 5. The keypad.

Keypad. After the keys on the parameter modules, which
are mainly used to enter the menus and adjust parameter
seftings, the keypad underneath the screen is the main
tool for users to interact with the monitor. Fig. 5 shows
this keypad. As mentioned above, a handheld keypad for
remote operation has some additional functions available.

The first row of keys on the keypad consists of seven
function keys. Their functions are defined by the menus
that appear on the screen.

The next row of keys is used to enter six different cate-
gories of monitor interaction.

The lowest row contains keys that immediately start ac-
tions that are frequently used in the hospital's daily rou-
tine. The Standard Display key always returns control to the
resting display.

The Silence/Reset key is used (o silence or reset alarms.
The Suspend key is used 1o suspend or activate instrument
alarm capability. There are alarm-indicating LEDs on the
left and a diamond of four cursor keys and a Confirm key
on the far right. The last group of keys gets highlighted if
they can be used.

The Array of Choices. If one of the keys in the middle row
is pressed, the user immediately gets a display of all of
the interactions that belong to the category described on

WILHELM ME1

| #onms

Wus 60

= {3070 (91

o MY (33

Paramwters

PULSE

Fig. 6. The Parameters array of choices.

© Copr. 1949-1998 Hewlett-Packard Co.

the entry key (see Fig. 6). There are no hidden functions
that the user might remember but does not know where
to look for.

Behind some of the entry keys there can be more than
seven functions. Thus the user is shown an array of
choices with up to four possible lines of softkeys. The
number of entries depends on the category and the con-
figuration of the Component Monitoring System. The ac-
tive line is shown in full intensity. It can be moved up
and down either by repeatedly pressing the entry key or
with the cursor keys.

The array of choices illustrates three important mecha-
nisms that oceur consistently throughout the operating
conceptL.

Resources, such as the place occupied by the array of
choices, are used according to the system configuration.
Selected items are shown in full intensity

Two methods are consistently allowed for selecting an
iten: either by repeatedly pressing the key that was used
to enter the context, or by using the cursor keys. Usabil-
ity testing has shown that there are personal preferences
for either method depending on the user’s background. As
a third method, touch would not clash with the operating
structures, although it is not offered at this time. Inverse
areas in hall intensity could be activated by touch.

Status Area

Interactive Area

Help / prompt strings J

o] —=dE 2 ki] 6 Ji

Fig. 7. The generic layout of a task window.

Task Windows. The array of choices is an intermediate
step in entering the next operating level, the task window.
Fig. 7 shows the generic layout of a task window. The
possible functions are labeled with inverse softkeys,
which do not change in this context. The currently active
funetion is highlighted and linked to the interactive area
above, which can contain items o be selected or special
contents needed for this specific softkey.

1l Il Il I

Il | L1

Tl

|
Resel

Overview | | iglument | | Nowloing | | Patent | | parameters

S | [][omee]

&

|

4

ECG

PRESSURE

Fig. 8. Overview of the Comyion-
ent Monitoring System operating
levels,

October 1991 Hewlett-Packard Journal - 35

© Copr. 1949-1998 Hewlett-Packard Co.

Standard Parameter

Arrsy of Application 1.
i Cholces = Software
Manager Modules
Message Passing el =0 ==
Bus _t * A
| Dynamic Link L eos $

Interface Broadeast

Standard Parameter do
Interface Broadcast hits it

v |
v
Task Window
Command
Interpreter

Top-Line
Editors

v
Device Drivers

Human
Interface

o e Software

Values
Editor

o

Message Passing
Bus

Internal
Keypad

Remote
LOTTL

Lamps
and -
Speaker

The status area underneath the title contains all status
information about the current task—including a real-time
waveform if available—to make sure that the user does
not have to select a function just to get more informa-
tion. The user only needs to press a softkey if something
is to be changed.

If required, the rightmost softkey can be used to jump
back and forth to a subsequent task window. As an exam-
ple, Fig. 8 shows an overview of the operating levels for
three parameter sefups.

Human Interface Software Architecture

The human interface software is embedded in the overall
Component Monitoring System software architecture. It is
one of the large data sinks that make intensive use of the
communication model with its message passing concept.
The well-structured information provided, for example, by
the standard parameter interface (see article, page 19)
makes it possible to add new parameters with virtually no
changes to the human interface software. It also allows
resources to be used very effectively by allocating
memory depending on the number of messages to be pro-
cessed.

Fig. 9 shows the layered structure of the human interface
software module. Each parameter module, even a new
one, broadcasts its standard parameter interface messages
and is automatically recognized by the screen configura-
tion software. To get a task window, any application soft-
ware module either applies directly to the task window
arbiter or specifies an entry in the array of choices. If
selected, the array of choices manager arranges a dynam-
ic link between the parameter module and the task win-
dow arbiter.

Any application software module can present information
in a task window by using a command language that sup-

36 October 1991 Hewlett-Packard Journal

i Static Links

Display

Controller Fig. 9. Layvered model of the hu-

mar interface software.

ports the specific elements of the human interface. This
is an effective way to achieve the required consistency
across all task windows. The content of the task windows
is determined by the application, but human interface
related definitions are coded in the command language.
Thus, most changes affecting the human interface design
have to be done in the human interface software only,

A powerful standardized keyhandler builds the interface
between the application software and the task window
command language. The command language hides the
pixel coordinates of the display controller from the appli-
cation software. Thus, the application software does not
have to be changed in case the display technology
changes, for example to LCD. The coordinate system of
the task window command language is the same as was
used during the human interface screen simulation.

There are asynchronous FIFO buffers in the path between
the task window commands and the connected hardware
devices, mainly the display controller. A special hand-
shake mechanism based on the monitoring of token mes-
sages guarantees that the FIFOs cannot be flooded in
peak situations.

By setting up the human interface module two or more
times in the monitor configuration table (see article, page
13) and plugging more display controller cards into the
computer module, several independent displays can be
connected to one Component Monitoring System.

Acknowledgments

Many thanks to Steve Emery of HP's Waltham Division,
whose assistance and application knowledge gave us valu-
able help in defining the human interface.

© Copr. 1949-1998 Hewlett-Packard Co.

Globalization Tools and Processes in
the HP Component Monitoring System

Software design and localization are decoupled. All languages are treated
in the same way. A database contains the text strings for all languages,

and automated tools aid the translator.

by Gerhard Tivig

The HP Component Monitoring System is an international
product designed for a worldwide market. Among the
requirements for the product were introduction of local-
ized versions simultaneously with the shipment of the
standard product, full Asian language support, and low
incremental effort for localization in any new language.

At first release, the product was localized in the following
languages: English, German, French, Dutch, Swedish, Ital-
ian, and Spanish. A Kanji/Kana prototype version was
available as well. The current release is also localized in
Danish, traditional Chinese, and simplified Chinese.

Localization Goals

To fulfill the requirements, a number of goals were sel
forth very clearly in the design phase of the Component
Monitoring System software. The major goals were the
decentralization of localization efforts, the automation of
the localization process, and the standardization of inter-
faces.

Decentralization. Decoupling the software design and im-
plementation process (R&D responsibility) from the local-
ization process (technical marketing responsibility) makes
it possible to produce a localized Component Monitoring
System without interrupting the software engineers work-
ing on their software modules. The coordination and tim-
ing of the translations are not directly coupled with the
software development process.

Automation. Automated processes Lo generate localized
Component Monitoring System software allow efficient
generation of localized versions whenever they are need-
ed, especially in prerelease phases (regulatory approval,
clinical trials, demonstrations, etc.). The automated pro-
cesses transform all Component Monitoring System text
strings from plain English to the equivalent hexadecimal
character representation. Automatic format checking is
part of this process. Translation of all text strings of a
Component Monitoring System software release in a
single pass improves the consistency of the translated
text—similar terms are translated the same way in vari-
ous places. The same translator is responsible for text
strings and for the Operating Guide translation.

Standardization. A well-structured native language support
(NLS) database is needed. The generation process for
localized software and the translation process are the

clients of this database. The NLS database is part of the
Component Monitoring System software maintenance sys-
tem.

Simple and standardized interfaces between the compo-
nents of the localization process are necessary. This in-
cludes common file formats for the NLS database, com-
mon tools for accessing and handling text strings, and
common tools and processes to franslate and generate
localized software,

Design Decisions

Specific design decisions had to be made to achieve these
goals. Among these are:

The HP standard Roman8 character set is supported. This
allows localization of up to 14 Western European lan-
guages with one Roman8 character generator, which is
located on the display controller function eard. This con-
siderably simplifies the handling of European language
options.

All character codes are two-hyte codes. Thus all text
strings use two-byte character codes. This allows support
of Asian languages as well as all European languages in a
consistent way. For Roman8 characters, the upper (un-
used) byte is cleared.

A given text string has a fixed field length across all lan-
guages. Thus the field length of a given text string is nol
language dependent and the access of a software module
to its text strings is language independent. In addition, all
text strings are terminated with an end-of-string charac-

Normal Character Cell = 16 x 20
MAsian Font Cell = 16 = 16
Asian Character Body = 15 » 16 {right justified)

Fig. 1. Component Monitoring System standard character cell.

37

Oetober 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

L

ter. There is no language dependency in the way strings
are handled in different languages.

Text strings are separated from module code. All soft-
ware modules are language independent. Inside each soft-
ware module, all text strings are located in TEXT directo-
ries, thus being separated from the code (PROG) directory.
Changing text strings from one language to another does
not affect the Component Monitoring System code. No
recompilation of the software is necessary when a new
localized Component Monitoring System version is pro-
duced.

Standard HP16 codes for all Asian languages are sup-
ported. This allows the Component Monitoring System to
handle all Asian languages identically and supports the
connection of Asian printers as well. For each Asian lan-
guage, a specific Asian EPROM card with the complete
font set is supported.

The standard character cell supports all Asian language
fonts. The standard character cell is 16 pixels wide by 20
pixels high. The Asian fonts (Kanji/Kana, Chinese) are
handled as right-justified 15-by-16-pixel characters (see
Fig. 1).

A pixel is 0.219 mm wide by 0.352 mm high, giving an
aspect ratio of 1.6. An Asian character should have a
square appearance, so the display controller firmware
doubles each pixel in the x dimension. This means that a
Kanji character takes twice as much space in a horizontal
string as a Roman8 character. Since each Kanji character
occupies two normal character cells, all Asian strings are
limited to half the length of Roman8 character strings.
The Asian translation tool takes this restriction into con-
sideration. Fig. 2 shows the traditional Chinese translation
of a typical Component Monitoring System task window.

The NLS Database

The NLS database contains all strings that are visible to
the Component Monitoring System user. They show up

CHECK STATUS LOG |REIIEUREETNENCIR IR FAN R L ARMS SUSPENDED

i il Werg B e St R HR Nem - paced mode
H R, N i
AruLse &l
" R
mABR - 120/70 (21
== == = == =7 NBP
1my 5a0,; 100
FI, Q2
AGE 120 RESF 15
[| FRESS 1 BN)
. Hear
FABP ~. 2 —~ ~ - =
e p S S ES i
g |;: |

Fif

i L.
HE(E BTN

200

Fig. 2. Traditional Chinese translation of the pressure calibration
task window.

38

October 1991 Hewlett- Packard Journal

userscmsinls

e
RAW ENG GER admin toals do¢
o, N
~ \x
B
ENGS.D ENGE:1 GERSD GERE.1
PRESS ECG PRESS ECG.
//.] / \‘
TW_TITLE SK_LABEL.., TW_TITLE SK_LABEL...
1 string? 1 sinngt

2sinng? 2 siring2

Fig. 3. NL5 database structure.

mainly on the screen, but may also be present on the
keypad and the patient parameter module panels.

The database is organized under the HP-UX file system as
hierarchical file directories (see Fig. 3).The database is an
integral part of the Component Monitoring System docu-
mentation and is maintained with the HP-UX res utility.

Below the main entry, a distinct entry called a LANG(uage)
iree is provided for each language. There is a basic direc-
tory where all localizable strings are stored in plain En-
glish. This is the RAW directory. Its struciure is identical
to all of the LANG frees but if is not known to the transla-
tion tool and to the text compiler. Whenever text strings
are added, deleted, or changed, this directory must be
updatecd.

The LANG trees are organized as a collection of valid NLS
revisions, such as ENG/ENG6.1 or GER/GER6.2. The English
revision is the starting point for all further translation
activities. All LANG trees have an identical structure and
are composed of a collection of NLS entries such as ECG,
PRESS, and so on. Each software module has one NLS
entry in the database. Keeping all text strings of one sofl-
ware module together eases and improves the translation
of the text strings of thai module.

Each NLS database entry contains a set of NLS files that
incorporate the text strings. A standard file format is es-
tablished for all NLS files (see Fig. 4a). It is processed by
the NLS tools and recognized by the translation tool. NLS
files contain title, header, context, and text sections. The
title section contains the pathname, language, and revi-
sion of the NLS file. The header section is a list of formai
specifications, such as sz for string size or .ic for initial
caps, which are read by the hexpander tool (see below).
In the context section, advisory information is given to
the translator to make translation of that NLS file easier.
It is read only by the translation tool. The text section is
the body of the NLS file. It contains a sequence of items,
cach item identified by a text code and a text string.

© Copr. 1949-1998 Hewlett-Packard Co.

NLS Tools

The hespander and the syntax checker are used to gener-
ate and check the hexadecimal character strings in the
ENG directory. The text compiler interfaces the NLS data-
base to the C source code. Fig. 5 shows how the NLS
tools interact with the NLS database.

The hexpander takes the plain English text from the RAW
directory and generates the hexadecimal character strings
in the ENG directory according to the format specifications
(see Fig. 4b). A utility called make_hexpand automates the
process of generating and checking the syntax of the hex-
panded ENG strings.

The syntax checker reads the hexpanded files and flags
syntactically incorrect strings (e.g., too long). A similar
checker is incorporated into the translation tool to check
the hexpanded ENG NLS file before translation takes
place.

The text compiler links the C source code with the NLS
database, which contains text strings collected in files,
References to these files include the language, the module
entry (such as ECG or HEART), and the specific file contain-
ing a given class of text strings (such as SK_LABEL or
ALERT). Fig. 4 shows an example of the ECG/SK_LABEL text
file. '

In the TEXT directory, the programmer specifies a source
file (of class .txt) which contains the references to the
NLS files, such as ECG/SK_LABEL 2.1. The txt file is identical
to the ¢ file except that it has the NLS file references,
(preceded by the escape character 1), which must be
resolved before the file can be compiled (using make). The

Title *CMS TEXT FILE
Language: ENG
SRevision: 8.5 §
$Source: ‘users.cmsnis’RAW ECG RCS SK_LABEL.vS

ECG'SK_LABEL

Header *Format Specs:
e *initinl caps
ce “centered within each of (he two lines

5268 *stting length (NORMAL characters)

Context This file contains the softkey labels for all softkeys in the ECG
task windows. In the task windows the sottkey labels consist of ‘verb + noun
because they relate directly to anaction. All softkey labels exceptthose containing

parameter labels (e.0.. PRESS) are written wilh initial capitals.

Text *Softkey 6'Page 0
2.1 “Adjust
2.2 "Alarms

[Enter the alarm page of the ECG HR parameler |

(al

* Softkey 6/Page 0
2.1 “Adjust”
0020 0041 0064 DDGA 0075 0073 0074 D020

2.2 "Alarms”
0020 0041 006C 0081 0072 008D 0073 0020

| Enter the alarm page of the ECG/HR parameter |
(b)

Fig. 4. (a) Example of an NLS file from the RAW directory. (b) Text
section of the hexpanded file in the ENG directory.

English Text,
Context Information

Hexpanded Format

English Text - Specifications
Transiated
Text
/ Text
/ String
_—— Select Language
2 and Revision
Language
Independent e

Text Specrllcatmn/ Programmer's

C Code
¢ Files

IECG/SK_LABEL 2.1

IECG'SK_LABEL 22

Programmer s Deliverable
1t files

Fig. 5. NLS tools.

text compiler resolves these references. It reads the hex-
panded NLS file (Fig. 4b), extracts the hexadecimal equiv-
alents of the referenced text strings, and replaces the
NLS file references in the .o file with these strings. The
output is the C source file (of class c).

Thus, the text compiler is simply a preprocessor that
takes care of the text strings. The programmer of the
software module does not have to know what hexadeci-
mal strings are ultimately loaded into the c file. This is
language dependent and does not affect the ¢ code.

To automate this process, the make_lang utility was estab-
lished. This utility is a script that executes the text com-
piler for every software module that contains references
to localizable text strings. The text compiler resolves
these references by inserting in the indicated places in
the txt files the hexadecimal equivalents of the text
strings. The output ¢ file is then compiled by the make
utility in the usnal way. An example of calling the
make_lang utility is:

make lang “NLSREV=7.2" "LANG=ENG"

Localization Process
The process established to implement the localization
activities is shown in Fig. 6.

R&D is responsible for the generation and maintenance of
the NLS database and the RAW and ENG language trees.
The checked-in ENG revision is the starting point for all
translations. This ENG tree is provided to the technical
marketing group together with a delta list containing all
changes from the previous ENG revision. This group is
responsible for driving and coordinating the translation
process. When this process is complete, the translated
LANG tree is loaded back into the NLS database. Auto-
mated utilities such as make _cms are used in R&D to gen-
erate the localized Component Monitoring System soft-
ware. R&D is responsible for providing the EPROM cards
with the localized soltware. A quality assurance cycle
similar to that for the ENG version is then started for each
localized version. Part of the QA process is a consistency

Octobor 1991 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

= g

LANG Treg P4 LANG

Checked-in |
Ik T |
A ANy - il Translated
“ENG /' LANG
| ? L 4
.‘- ; Tree 4 Tree
ns Transtation
Data Tool
Base
ENE Local Translation
Tree / Offices
e > Quality
Localized Software Assurance

Fig. 6. The localization process.

and wording check of the localized software. The lan-
guage verification is scheduled and coordinated by techni-
cal marketing. The same translator who did the Compo-
nent Monitoring System translations is assigned to
language verification of the Component Monitoring Sys-
tem product.

Translation Tool

The localization goals could not have been achieved with-
out a powerful and versatile translation tool. Because
nothing was available off the shelf, we had to write our
own. The tool is personal-computer-based, thus allowing
translations of the Component Monitoring System text
strings in each local HP office. The tool supports 16-bit
character codes. It handles the standard Roman8 charac-

ter set and allows printing of the translated strings on a
HP LaserJet printer.

The tool is designed to facilitate translations of large
quantities of text. The tool reads the English source files
and presents the translator with the destination fields for
the translated strings, which are then written to the re-
spective LANG tree.

Translation is possible for a complete LANG entry, for spe-
cific NLS entries (e.g., all strings of the ECG software
module), or for specific text files inside one NLS entry.
Printouts can be made from each of these translation
levels. The user interface is softkey driven.

Presently, this tool is used throughout the HP Medical
Products Group and is supported by the CAD/productivity
group at the Boblingen Medical Division. It allows effi-
cient translations with a clear, standard interface to the
NLS database and the Component Monitoring System soft-
ware development group. Its major benefit and achieve-
ment is the separation of translation activities from the
software development efforts.

Acknowledgments

Many thanks to Ulrich Muskatiewitz who wrote the trans-
lation tool and extended it to cover Asian languages, to
Satoshi Yamada of Yokogawa-Hewlett-Packard for his ex-
tensive support in implementing Asian languages, and to
Harald Greiner who was responsible for implementing the
Asian fonts and associated control mechanisms in the
display controller firmware. Thanks also to Martin Kat-
schner whose continuous support of the translation tool
and translation activities allowed us to localize the Com-
ponent Monitoring System product in seven languages on
time for the first release.

The Physiological Calculation
Application in the HP Component

Monitoring System

This application converts raw real-time data into derived values the
clinician can use to assess the patient’s hemodynamic, oxygenation, and

ventilatory condition.

by Steven J. Weisner and Paul Johnson

The HP Component Monitoring System bedside monitor
provides the clinician with a variety of vital-sign parame-
ters such as heart rate and respiration rate. These raw

40 October 1991 Hewlett-Packard Journal

values and the associated alarms are very important in
monitoring the patient. However, the human body is not a
collection of independent physiological systems. Rather,

© Copr. 1949-1998 Hewlett-Packard Co.

all major body systems interact in a variety of ways,
many of which ean be calculated by combining the raw
parameter values into meaningful indicators.

Physiological calculations are used routinely by many
hospitals as part of their normal assessment and rec-
ord-keeping process. Caleulations provide a way of quick-
lv reducing a large number of variables into a single num-
ber that represents a comprehensive physiological
function. For example, to measure the load applied to the
left ventricular heart muscle during the period of the
heartbeat when the blood is gjected from the heart into
the rest of the body (ventricular ejection), a variable
called systemic vascular resistance (SVR) can be calcu-
lated from measurements of the mean arterial blood pres-
sure (ABPm), central venous pressure (CVP), and cardiac
output (CO).!

Studies have shown that calculated values such as pulmo-
nary vascular resistance (PVR) and left and right cardiac
work (LOW/RCW) are good predictors of major malfunc-
tions or mortality in intensive care patients.” Other stu-
dies have validated the efficiency of using calculations
such as stroke index (SI) and left and right ventricular
stroke work (LVSW/RVSW) for preoperative assessment of
unacceptable risks for major surgery.”

The Typical Calculation

Poiseuille’s law describes the laminar, constant flow of
Newtonian liquids through rigid cylindrical tubes. Accord-
ing to this law, the ratio of pressure drop to the rate of
flow is a function of all of the forces that retard this flow
(i.e., radius, length, and viscosity). Blood does behave as
a Newtonian fluid in blood vessels that are greater than
0.5 mm in diameter. Blood flow through these vessels is
generally laminar, although the arterial tree exhibits more
pulsatile behavior. Although blood vessel radii do vary
slightly because of the applied pressure of the blood, Poi-
seuille’s law can be used to calculate a first-order approx-
imation of resistance by applying Ohm’s law for electrical
circuits.

Just as resistance in a circuit is equal to the voltage dif-
ference divided by the current flow, vascular resistance

(R) can be approximated by dividing the pressure differ-
ence between the inlet of the vascular bed (P1) and the
outlet of the bed (P2) by the blood flow (Q).

R = (P1 - P2)/Q.

In medical terms, we measure the difference between the
mean arterial (ABPm) and venous (CVP) pressures and
divide by the cardiac output (CO). The resultant value is
converted from units of mmHg/ to units of dyne-s/cm® by
multiplying times 79.97. This value is called systemic vas-
cular resistance (SVR),

SVR = 79.97(ABPm - CVP)/CO.

With this value, the clinician can get a measure of the
constriction of blood vessels (vasoconstriction) or expan-
sion of the blood vessels (vasodilation). Changes in SVR
are related to other cardiac failures such as hypovolemic
shock, left ventricular failure, cardiogenic shock, and hy-
poxemia.?

Other calculations used to assess the state of the cardio-
vascular system are shown in Fig. 1.

The two pressure measurements ABP and CVP are ac-
quired through invasive pressure catheters attached to the
patient and monitored through the Component Monitoring
System parameter modules. The cardiac output parameter
is obtained through a CO parameter module and mea-
sured using a monitoring procedure, which requires the
clinician to interact with the Component Monitoring Sys-
tem. The acquisition of the output value (SVR in this
case) and the presentation of the calculations to the clini-
cian are described in the following sections.

Data Management Package

The calculations package in the Component Monitoring
System is a subset of a more general data management
package. This package consists of seven Component Mon-
itoring System application software modules, as shown in
Fig. 2. The data acquisition module acquires and averages
raw parameter data (e.g., heart rate) over a one-minute
period. This raw data is available as a broadcast message
on the Component Monitoring System’s internal message
passing bus. The one-minute-average data is stored in a
buffered RAM database. The database module provides 24
hours of data storage for 16 continuously monitored pa-

Body Surface Area: (Boyd's Formula)

BSA = (3.207 x WT (07285 — DOTBB > log WT) o yr03y ;40000
Units = m?
Cardiac Index :
Cl= CO/BSA
Stroke Volume :
SV = CO x 1000HR
Stroke Index :
§l= SV /BSA
Systemic Vascular Resistance :
SVR = 79.96 x (ABPm — CVP)/CO
Systemic Vascular Resistance Index:
SVRI = SVR x BSA
Pulmonary Vascular Resistance ;
PVR = 79.96 x (PAPm — PAWP)CO
Pulmonary Vascular Resistance Index ;
PVRI = PVR x BSA Units = dynes-sec-m?cm®
Left Cardiac Work :
LCW = CO = ABPm x 0.0136
Left Cardiac Work Index :
LCWI = LCW ' BSA
Left Ventricular Stroke Work :
LVSW = SV x ABPm x 0.0136
Left Ventricular Stroke Work Index :
LVSWI = LVSW ' BSA
Right Cardiac Work :
RCW = CO x PAPm x 0.0136
Right Cardiac Work Index :
RCWI = RCW / BSA
Right Ventricular Stroke Work .

Units = I/min-m*

Units = ml

Units = mim®

Units = dynes-secicm®
Units = dynes-sec-m®cm®

Units = dynes-secicm®

Units = kg-m
Units = kg-m'm?
Units = g-m
Units = g-m'm*
Units = kg-m

Units = kg-mim?

RVSW = SV x PAPm x 0.0136 Units = g-m
Right Ventricular Stroke Work Index :
RVSWI = RVSW /BSA Units = g-m'm?

WT — Body Welighting

HT — Body Height in cm

HR — Heart Rate in beats/min

CO — Cardiac Output in I/'min

ABPm — Arterial Blood Pressure Mean in mmHg

CVP — Central Venous Pressure in mmHg

PAPm — Pulmonary Arterial Pressure Mean in mmHg
PAWP — Pulmonary Arterial Wedge Pressure in mmHg

Fig. 1. Hemodynamic calculations performed by the calculation

evaluator module of the Component Monitoring Syster data man-
agement software package,

October 1991 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

Parameter Input

Dala
Acquistion

Data Store

Time of Day
— 1

Data

Data Request,
¢ Output

Calculation Request

Preseniation

4 Calculation Output

Print Request -

rameters with one-minute resolution. Parameters that are
measured intermittently or as part of a procedure, such
as noninvasive blood pressure or cardiac output, are re-
ferred to as aperiodic parameters. The database module
allows storage of 36 aperiodic parameters, each contain-
ing up to 96 measurement points. All retrieval of the data
is mediated by request messages and return-data mes-
sages sent across the message passing bus.

The acquired data can be presented in four forms. A tab-
ular data display (UPC_TABULAR) presents 13 rows of pa-
rameters in eight columns of time. A graphic trends dis-
play (UPC_TRENDS) shows up to nine parameters in graphic
form on three separate axes. Calculations are done by
two modules: the ealeulation evaluator (CALC), which per-
forms the calculations, and the presentation module
(UPC_CALC), which provides the user interaction with he-
modynamic, oxygenation, and ventilation calculations. The
clinician can also review the calculated data as a function
of time in a tabular format.

Finally, there is a report package, which provides printed
copies of any of the tabular, trends, or calculation dis-
plays. This report is preformatted and can be printed lo-
cally at the bedside or remotely on a central printer.

Calculation Evaluator

The calculation evaluator module (CALC) is a collection of
services associated with physiological calculations. These
services are invoked by means ol messages sent to the
CALC module. Typically, applications such as UPC_CALC in-
voke the functions of acquiring the appropriate reference
time and input parameters for the calculation and then
calculating the output values.

In addition, the CALC module provides a separate service
to calculate the body surface area (BSA), which is userd
as a common index for many physiological calculations,
and is also used outside of the data management package
by the cardiac output module.

42

October 1981 Hewlett-Packard Journal

N Data e
. Reguest

. Data Request

Data~
Output

,".Prinl ﬂequesl'___.

~ print Reques!

Fig. 2. Data management data
Mow diagram. The data manage-
ment package consists of seven
application software modules.

Calculation Presentation

The clinician obtains the services of the calculation evalu-
ator through the user presentation module of the calcula-
tions software, UPC_CALC. UPC_CALC is a single Component
Monitoring System application that provides access (o
both calculation entry and calculation review frames.

The first step in performing physiological calculations is
for the clinician to select a physiological calculations
group from the set of predefined options: hemodynamics,
oxygenation, and ventilation. This is accomplished by se-
lecting the appropriate entry key in the Patient Data array
of choices. Once this is done, the Component Monitoring
System human interface software establishes a link be-
tween UPC_CALC and the monitor display. The calculation
entry frame is shown in Fig. 3.

After the calculation group has been selected, the clini-

cian can then perform one or more of the following ac-

a(atHR 118 > 98

|
I HR Hi< ¥

PLLSE
A pd s 118 100
| | { I (' | i
¢ Hemodynamic Calgulations —
units units units
co 7.47 l/min T 3.49 |s/minsm2
HR BPM BV 85,8 ml 181 44.8 ml/m2
REP. 5 128 mmHg SVR 748 DS/cmS |SVRI 1683 DSm2- cmS
ABF O 68 mmHg PVR 75 DS/cmS PYRL 168 DSm2~scmd
RBP M B3 mmHg LCW 8.4 kg-m LOWI 3.8 kg-msm2
PAP S 31 mmHg LVSH 188.1 g-m LVEWT 58.5 g-m/m2
PRP O 18 mmHg RCH 1.73 kg—M [RCHIL .B1 kg-msm2
PRP M 17 mmHg RVSW 22.14 g-m RVEWI 18.35 g-msmd
PRwe 18 mmig
cvP 13 mmHg
He ight 185 em Caloculation Time:
Weight BB.4 kg BSA 2.14 me 23 SEP 7:85
e the Lp erd cowr a=row heys to sclect & parssete value.
Li=a the keypead te chengs the zalectze value.

On/Of f

DataT ime

Change Review
Time Cale

Fig. 3. Hemodynamics caleulation entry frame alter caleulations
have been performed.

© Copr. 1949-1998 Hewlett-Packard Co.

R.G.Mortis Bed : Report :25SEP1989 14:31
MR # :123-456-7830 Adm Phys :M.Craig Admit :09-25-89
DOB :02-23-48 Att Phys :P.White

Hemodynamics Review

25SEP 7:05 B:00 %15 9:50 1015 10:30 11:00 1310
sy 958 1029 78.3 747 B0.6 875 894 9.3
SVR 748 877 980 526 925 928 955
PVR 75 8 9 4]] 108 12 115
LCW. B4 LE 95 85 2.1 9.2 5.8 83
Lvsw 108.1 1258 1065 996 1008 1095 1084 1182
RCW 1.13 1.86 2m 1.83 1.87 2.00 1.94 142
RVSW 2214 2658 2237 1931 2082 2380 2431 19.88
BSA 214 Fa L} 214 214 214 274 214 4
C.l 348 3.36 328 3 138 3.43 3.4 3.25
sl 448 481 36.6 348 s 409 s 45
SVRI 1603 1878 2184 2097 1883 1979 1986 2044
PVRI 160 166 184 169 212 233) 248
LCWI 39 41 45 44 42 43 a1 40
Lyswi 50.5 58.8 498 4835 41 51.2 511 55.2
ACWI 81 87 94 B8 8 93 N .66
RVEWI 1035 1242 1045 902 973 1192 1136 9.20
c.0. 147 7.20 7.05 7.10 7.25 7.35 715 6.95
HR 78 0 %0 95 80 B4 80 72
ABPS 129 135 139 135 130 130 120 15
APBD 60 65 69 65 60 62 75 70
ABPM 8 50 100 9% 92 92 9K 80
PAPS 3 33 34 32 0 K| 28 7
PAPD 10 12 13 12 10 10 9
PAPM 17 19 2 19 19 20 20 15
PAWP 10 12 13 12 10 10 10 5
CVPM 1 1 10 " (] i 7 7
Height 185 185 185 185 185 185 185 85
Weight 884 88.4 884 B84 BB 86.4 884 B84

Fig. 4. Hemodynamics calculation review frame.

tions by using the labeled softkeys and a remote keypad
for alphanumeric entry:

Select a calculation time

Enter or edit input parameters

Caleulate output parameter values

Display alternate parameter attributes

Print a report of the calculations.

UPC_CALC uses the measurement time of the prineipal in-
put parameter as the reference time for all calculations.
In the case of hemodynamic calculations, shown in Fig. 3,
the cardiac output parameter drives all of the other calcu-
lations. Thus the time of the last CO measurement is
used as a reference. All other input parameters used in
the calculations are retrieved from the data management
package database through a CALC module service, based
on that reference time. The clinician can choose o over-
ride this time by using the Change Time key to select a dif-
ferent reference time.

Not all input parameters used to perform calculations are
automatically acquired by the Component Monitoring Sys-
tem. By using the remote alphanumeric keypad, the clini-
cian can enter a numeric value for any of the input pa-
rameters. The clinician can also override an automatically
acquired parameter simply by entering a new value. All of
these manually entered values are stored in the database
and are used in subsequent calculations.

Once all the necessary calculation time and input parame-
ter changes have been made, the clinician can request

calculations of the output parameter values. UPC_CALC
sends a request to calculate the output values to the CALC
module, which performs the appropriate calculations. CALC
then sends a return message back to UPC_CALC containing
the list of output parameter values, labels, normal ranges,
and measurement units. UPC_CALC uses this information to
show the output values on the Component Monitoring
System display.

The clinician may wish to compare the output values to
the expecied normal physiological ranges for these val-
ues. When the ON/OFF Ranges softkey is pressed, UPC_CALC
toggles between showing the output parameter units and
the normal ranges.

UPC_CALC also serves as the presentation layer software
for the calculations review frame. The review frame pre-
sents the clinician with a tabular format of all previous
calculations performed for this patient. As in the calcula-
tions entry frame, the clinician can compare values
against normal ranges and obtain a printed report, as
shown in Fig. 4. Typically, this report might be included
with the patient record to aid the clinician in assessing
the patient’s past and current physiological states.

Conclusion

The Component Monitoring System data management cal-
culations package provides the clinician with a means of
reducing the large volume of raw vital-signs data into a
manageable set of variables. Measures of cardiovascular
performance, blood oxygen content and delivery, and re-
spiratory gas exchange can be obtained through the he-
modynamic, oxygenation, and ventilation calculations.
These calculations are vital to the clinical diagnosis and
prognosis of the critically ill patient.

Acknowledgments

The authors greatly acknowledge the efforts of the data
management project R&D, soltware quality engineering,
marketing, and management teams, specifically Rick
Beebe, Krishen Bhan, Jeff Corliss, Peter Dabos, Debbie
DeRosa, John Doue, Joe Dumas, Dave Ellis, Sandy Fogle-
song, Bill Francis, Kathryn Graham, Jack Harrington, Car-
la Joliat, Jean-Luc Kastner, Wolfgang Krull, Fran Michaud,
Ram Mukunda, Tasha Perdew, Kari Perry, Egon Pfeil, Sue
Poliner, Jim Rueter, Linda Straw, Charlotte Swartz, Paul
Tessier, Gerhard Tivig, and Jack Ward.

References

1. D. Pollard and E. Selliger, An Implementation of Bedside Physio-
logical Caleulations, Hewlett-Packard Company, 1985, HP publica-
tion number 5954-1779.

2. W.C. Shoemaker and L.S. Czer, “Evaluation of the Biologic Impor-
tance of Various Hemodynamic and Oxygen Transport Variables,”
Critical Care Medicine, Vol. 7, no. 9, 1874, pp. 424431,

3. L.R. Del Guereio and J.D, Cohn, “Monitoring Operative Risk in the
Elderly,” Jowrnal of the American Medical Association, Vol. 243, no.
13, 1980, pp. 1:350-13565.

4. 8.8, Yang, ot al, From Cardiac Catheterization Data to Hemaody-
namic Parameters, FA. Davis, Philadelphia, 1972

October 1991 Hewlett-Packard Journal -~ 43

© Copr. 1949-1998 Hewlett-Packard Co.

Mechanical Implementation of the HP
Component Monitoring System

The part count and the number of different parts are dramatically lower
than for previous designs. Fewer than ten vendors are used for purchased

mechanical parts.

by Karl Daumiiller and Erwin Flachslinder

From the mechanical perspective, the HP Component
Monitoring System offered several challenges. Among the
most important were the definition of the architecture of
the computer module and the design of the sheet-metal
and plastic parts for this component. Other mechanical
highlights include the implementation of the display front
assembly and the construction of the parameter modules.

Computer Module Chassis
The general design objective for the computer module
was to create a flexible, compact instrument that could

easily be extended and upgraded. In accordance with the

mocdular concept of the Component Monitoring System,
the computer module had to be designed so that the

function cards could be handled as independent modules.

All function cards were 1o be accessible without having
to remove or disassemble major parts of the enclosure.

From the production point of view, the following general
design objectives had to be met:

* Minimum part count

* Minimum number of parts with different stock numbers

* Minimum vendor count

* Use of preferred parts

DC-fo-DC
Converter Assembly

Cam

Printed Circuit
Board Guide \ .

<, 4:1&1:"1

Card

Top Cover —/ '

44 October 19891 Hewlett-Packard Journal

Central Plane

Foot

» Compliance with all relevant medical safety standards
» Simple and automated assembly.

We also committed ourselves to design an enclosure that
could be assembled and serviced with only one tool (all
you need is a screwdriver).

The clinical environment mandates that the product be
easily cleaned and have no sharp corners, sharp edges, or
deep indentations. Liquid spilled over the Component
Monitoring System is not allowed to create a hazardous
situation for the patient or the user, nor may it leak into
the unit. Last but not least, the constraints of the elec-
tronics had to be taken into consideration.

The requirements were sometimes contradictory. For ex-
ample, on one hand, the chassis needs to have low RFI
emissions, while on the other, it needs sufficient openings
to dissipate as much heat as possible. The maximum in-
ternal temperature rise cannot exceed 15°C. Heat manage-
ment is made more difficult by the fact that fans are not
acceptable in the monitoring environment. This implies
that natural convection is the main mechanism for dissi-
pating heat.

RFI Clip

Blank Cover

Fig. 1. Exploded view of the com
puter module of the HP Compo-
nent Manitoring System.

© Copr. 1949-1998 Hewlett-Packard Co.

o

Extensive measurements with simulated electronic circuits
and calculations in the early project phase were a good
basis for the architectural design of the computer module.
The knowledge gained from these studies and the demand
for easy access to the function cards led to the present
design.

Product Design

Two large sheet-metal parts form the enclosure of the
computer module (see Fig. 1). The bottom part of the
chassis is made of 1.25-mm-thick steel and has a large
number of openings for ventilation. Mounting holes and
pressed-in threads for the instrument’s feet and locking
cam are located here. The inner part of this U-shaped
component has a number of indentations and cutoufs.
This construction allows the plastic guide for the function
cards and the central plane to be snapped in place with-
out any screws.

The second large sheet-metal part is the top cover of the
chassis. Offset bends similar to those in the bottom part
of the chassis make it possible to snap the plastic func-
tion card guide into the lid. Pressed-in threads are
mounted on the offset flange to hold the function cards
within the computer module.

Two large indentations with strong steel strips rivefed to
the top cover provide a quick and easy way to mount the
14-inch display on the computer module should this be
desired. A combination of indentations with an undercut,
feet with noses, and the cam forms a tight locking mech-
anism between the display and the computer module.
This technique was first used by the HP Medical Products
Group in 1981 for the HP B040A cardiotocograph. This
well-established mechanical interface for stacking instru-
ments or attaching them to wall or ceiling mounts or
carts was a musi requirement.

After the U-shaped bottom cover and the lid of the chas-
sis have been assembled, all function cards can be in-
serted by simply sliding them into the enclosure. Metal
board covers mounted on the rear ends of the function
cards seal the remaining openings of the computer mocd-

Fig. 2. Inside the partially assembled computer module.

Fig. 3. Bottom view of the computer module with unlatched internal
rack and side and rear covers,

ule. Each board cover contains openings for RFI clips
and the function card’s external connectors, and provides
a mounting hole for fixing the function card to the frame.
The remaining area is perforated for ventilation, except
for the space needed to silk-screen the board name and
number. Fig. 2 shows the interior of the computer module
with the function cards inserted.

As described earlier, the function cards are held in place
by plastic guides in the top and bottom parts of the chas-
sis. The printed circuit board guide is an injection-molded
part that can be used in both locations by simply turning
it over.

After the top cover is installed, the left and right side
covers can be attached to the computer module. Again, a
single injection-molded part fits both sides. This part con-
tains all the vents and openings needed for thermal man-
agement. The side covers also conceal the six scerews that
attach the chassis top to the bottom. The customer can
easily remove the side covers for cleaning by unlatching
the internal rack (see Fig. 3).

For visual and cable management reasons, a rear cover
was designed. This injection-molded part contains
molded-on pivots and latching elements. Another injec-
tion-molded part with magnetic strips glued on fills the
indentations on the top cover when the instrument is in-
stalled without a display on top (see Fig. 4). This com-
pletes the set of plastic parts for the computer module.

The material used for all plastic parts except the chassis
feet is Bayblend™, a polycarbonate/ABS blend. The chas-
sis feet consist of two components: a highly filled poly-

amid for the body and a block copolymer for the inside
element. The cam is molded from polyacetate.

Display Front Assembly

The Component Monitoring System can be equipped with
a choice of displays. The basic models are 14-inch mono-
chrome and color displays. These displays consist of two
major components: the bezel or front assembly, and the
display consisting of the CRT, the deflection electronics,

Cetabier 1091 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. Assembled computer module with integral parameter module
rack.

and the main power supply for the Component Monitoring
System (see Fig. 5). The latter part is called the common
unit.

The common unit is a purchased part. To minimize the
number of options the vendor has to build and supply,
this part of the display contains no language-specific ele-
ments. All options, like local language, are restricted to
the front assembly only.

Objectives like design for manufacturability, clinical re-
quirements similar to those for the computer module de-
sign, and the limitations introduced by the electronic cir-
cuits played an important role in the development of the
Component Monitoring System displays.

Protective Cover

Thumbwheel

Power Knob —™., -

Color Bezel

46 October 1991 Hewlett-Packard Joumal

Ground Cable
i Printed Circuit
Board

Cover Connector

Fig. 5. The display consists of the front assembly and the display
itsell

The front assembly consists of a total of ten parts, which
can be assembled simply by snapping the components in
place. The main element is the plastic band (see Fig. 6).
This part attaches to the common unit. It also serves as a
pickup frame for the bezel, the human interface printed
circuit board, a power knob, and a protection cover.

The protection cover, made of thermoformed polycarbo-
nate, shields the human interface card from condensed
water or cleaning fluids, which might drip from the CRT
sereen onto the printed circuit board.

The bezel is attached to the band by snap-{it connectors
and presses against the rim of the CRT. Since the mono-

Monochrome
[Bezel

Membrane Keyboard
Assembly

Fig. 6. Exploded view of the front

assembly

© Copr. 1949-1998 Hewlett-Packard Co.

chrome and color displays do not have the same screen
curvature, two bezels had to be designed. The bezel pro-
vides room for a membrane keyboard, which is the main
control panel of the patient monitor. This keyboard is
based on a double-sided prinied circuit board. The con-
tact elements are metal domes of different sizes. They not
only make eontact when pressed. but also give a good
tactile feedback. The domes are covered with an em-
bossed polycarbonate polyester overlay, which has been
silk-screened from the rear to prevent abrasion of the
nomenclature. Currently, the membrane keyboard is avail-
able in 11 different languages.

Design Objectives for the Parameter Modules

The parameter module mechanical design included the
development of the plastic enclosure, the connectors, and
the overlays and the mechanical part of the printed cir-
cuit board design. Currently two module types exist:
single-width and double-width (Fig. 7). The prime objec-
tives for the design were that it be simple to insert mod-
ules and pull them out of the rack, that the modules be
rugged, and that the housing be compact, measuring only
100 mm by 100 mm by 36 mm. In addition to the general
mechanical objectives listed at the beginning of this ar-
ticle, the parameter modules have to meet two special
requirements. First, they must withstand a drop from a
height of one meter onto a concrete floor. Second, for
patient safety reasons, all connections to the patient are
electrically floating with respect to ground. This isolation
between floating and nonfloating parts is tested at 16 kV
and is implemented as part of the electronic circuit in
each parameter module.

From the electronic standpoint, two of the approaches to
meet these objectives were Lo use surface mount technol-
ogy for mounting the electronic components, and to apply
new ways of assembling the printed circuit boards to
achieve high packaging density. On the mechanical side,
new ways had to be explored to build thin-walled injec-
tion-molded parts that could withstand the mechanical
and thermal siresses and still be durable enough for their
long hard life in the clinical environment. The entire me-
chanical design was done on the HP ME 10 system. Be-
fore making the final molding tools, a large number of

Fig. 7. Single-width and double-width parameter modules

modules were premolded using aluminium tools. The ad-
vantages were that tests could be conducted with
close-to-final parts at an early stage in the project, and
larger quantities could be built at a moderate cost for the
extensive prototyping phase.

Parameter Module Design

The single-width parameter module consists of an assem-
bly of seven parts (Fig. 8). These include five molded
plastic parts for the enclosure, one front overlay, and one
printed eircuit assembly. The double-width module has
two additional parts for the housing, and in the case of
the noninvasive blood pressure module, a complete pump
assembly, which is built in (see article, page 25).

The plastic housing of the parameter module is divided
into an outer enclosure and an inner frame. This is neces-
sary to provide the 16-kV isolation between the floating
and nonfloating grounds, Between the outer housing and
the inner frame there is space for shielding material such
as copper, mu-metal foil, or thin-walled steel sheet. So far,
only the noninvasive blood pressure module has made
use of this kind of shielding.

The inner left and inner right frames are multipurpose
parts for both module widths. The double-width module
also has an additional middle part.

To provide maximum volume within the modules, all plas-
tic parts have very thin walls. Nevertheless, they have to
survive a one-meter drop. They also have to be resistant
to cleaning agents and disinfecting solutions. We have
found that Bayblend meets all these requirements. This
compound includes both polycarbonate and ABS. Polycar-
bonate improves the ruggedness of the material while
ABS has a positive effect on the chemical resistance.

The printed circuit assembly within the module consists
of three boards: a digital board including the power con-
verter, an analog board, and a board with LEDs and key-
switches mounted on it. The three boards are intercon-
nected by flexible layers soldered onto the boards. For
component loading, soldering, and test the three printed
circuit boards are handled as one partially routed board
with small bridges between the individual boards and an
outer frame to hold all of the parts in place. Currently,
we have nine parameter modules in production, which
represent a total of three different routing contours. The
overall size of the outer frame is identical for all parame-
ter modules, thereby contributing to our standardization
effort by making il possible to use identical pickup
frames for the different assembly stages. At the last stage
of the production process the three printed circuit boards
are broken apart, folded like a sandwich and inserted into
the plastic enclosure.

Additional mechanical parts that were designed for the
parameter modules are the patient cable, the patient con-
nector, and the module-to-rack connector. The patient
cable connector had to be compatible with HP's existing
monitoring equipment. One disadvantage of the existing
system is the limited number of mechanical keys avail-
able. For the Component Monitoring System we therefore
redesigned the connectors and extended the number of

October 1991 Hewlett-Packard Journal - 47

© Copr. 1949-1998 Hewlett-Packard Co.

°

\

possible keys so that each parameter has a dedicated
configuration.

Module Assembly

Assembly time for a single module is one minute. No
screws or fasteners are needed-all parts snap fit together.
The normal assembly procedure includes the following
steps:

Fold the printed circuit boards together.

Insert the printed circuit assembly into the left frame.
Snap on the right frame (the inner module is now com-
plete).

Slide the inner module into the rear part of the plastic
parameter housing.

Snap the front and rear housings together

Add the snap lock to the module.

The module is now ready and waiting for shipment. In
the last production step, the proper language overlay is
glued onto the front frame.

Conclusions

The mechanical design of the Component Monitoring Sys-
tem meets all of the design objectives. The E-score (a

48 October 1991 Hewlett-Packard Joumnal

Fig. 8. Exploded view of a
single-width parameter module.

measure of ease of assembly) is a high 77 on a scale of 0
to 100. Only one type of screw is needed for connections
where good grounding or stability is required. Part num-
ber and part count are dramatically reduced compared to
former designs, and the total vendor count for all me-
chanical parts is less than ten.

Acknowledgments

The authors would like to acknowledge the contributions
of a number of people who were involved in the mechani-
cal implementation of the Component Monitoring System.
Fritz Stepper started the design. Roland Boss continued
the design and did all the optimization and integration
work for easy manufacturability. Thanks also to Rainer
Rometsch who did the mechanical design of the display
front assembly. Werner Roessler was involved in extensive
thermal design measurements and plastic part design.
Special thanks also to Alfons Schmid, Herbert van Dyk,
our material engineers Hartmut Wiirfel and Eberhard May-
er, our samplemaker Ingo Gabelmann, and Otto Schuster,
who was the responsible production engineer. Last but

not least, special thanks to John Murphy for his assis-
lance.

© Copr. 1949-1998 Hewlett-Packard Co.

An Automated Test Environment for a
Medical Patient Monitoring System

The AUTOTEST program controls a keypusher and patient simulators to
automate the testing of the software for the HP Component Monitaring

System.

by Dieter Goring

The HP Component Monitoring System is a completely
new patient monitor. It is based on a dedicated operating
system and has an integrated data management system. It
can process data from as many as 32 patient parameter
modules and has an RS-232 interface for connecting a
printer (see Fig. 1).

Its alarm system has a very complex structure. There are
three priorities: red, yellow, and green. There are alarm
messages, sounds, and lights. Alarms can be turned on or
off for all parameters or only selected ones. Alarms can
be sent over the serial distribution network to central
stations, arrhythmia computers, or other medical devices.

Automated Test Environment

The ideal test setup for the Component Monitoring Sys-
tem was easy to define. We needed a Component Moni-
toring System patient monitor with all parameter modules
installed, and we needed a human being medically con-
nected to the monitor to (1) provide all of the patient
signals such as heart rate, blood pressure, and so on, (2)
change these signals to create alarm situations such as
asystole or low blood pressure (it is said that Tibetan

Parameter Waves

Parameter Numerics and
[/ Alarm Messages

monks could do this), (3) operate the monitor like a phy-
sician or a nurse, (4) watch the monitor’s display and
verify correct operation (parameter numeric values, alarm
messages), and (5) synchronously document all events.

Our solution to these requirements is the AUTOTEST
application (see Fig. 2).

The AUTOTEST application controls programmable pa-
tient signal simulators which play the role of a critically
ill patient (items 1 and 2 above). It also controls a key-
pusher, which can capture and execute keystrokes to op-
erate the monitor (item 3 above). It eannot “watch” the
monitor’s display, but “takes a snapshot” of all important
information (parameter numeric values, all alarm and in-
operative messages) of the display’s content whenever
needed. All this information is sent over the serial distri-
bution network every second (item 4 above).

AUTOTEST documents a test run completely into a proto-
col file (item 5 above). This can prove that a certain test
case has been run and that the unit has passed the test.
This is important, because regulatory agencies may re-
quest this data, even years after release.

A ADHRIBE / Display Module
Light - :

Alarm

Parameter Modules

Computer Module and Integrated
= / Parameter Module Rack

Key Bezel

Fig. 1. HP Component Monitoring
System with integrated parameter
module rack

October 1991 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

Selected Serial Distribution
Network Messages

Polls Dats lrom
Network
Protocol
Files

HP Vectra
Parsonal Computer
AUTOTEST Program

Controls
Two Simulstors

Logs on and
Controls AUTOMAN

 Editand
Hedteg AUTOMAN

Software

Serial
Distribution
Network

Component
Monitoring
System
under Test

Fig. 2. The AUTOTEST setup for

HP 3000
Computer

AUTOTEST Requirements

The AUTOTEST program requires an HP Vectra ES/12
personal computer with enough disk space (or better, a
large disk on a LAN server), serial and parallel interfaces,
additional dual serial interfaces for the simulators, and an
HP 78361A serial distribution network interface. Also
needed are an HP AUTOMAN keypusher and at least two
Dynatech 217A programmable patient signal simulators,
These simulators are widely used in medical R&D, testing,
and training. Two terminal ports on an HP 3000 computer
are needed, one for the Vectra PC and one for the AUTO-
MAN box.

The software includes the AUTOTEST program package
(written in C), AUTOMAN software on the IP 3000 com-
puter, and a smart editor on the Vectra PC for reviewing
the protocol files, which can be very large.

The AUTOTEST Program

AUTOTEST is a very simple but flexible application. It
reads serially through an ASCII test file and executes
each line as a command line. The following are available:
Commands to control Dynatech or other RS-232-driven
simulators connected to serial ports of the Vectra PC

A command to send a keystroke file to the AUTOMAN
application running on an HP 3000 computer

Commands to get the monitor's data and optionally all
alarm messages from the serial distribution network

A command to pause the test (lets the tester read the in-
structions) and wait for a comment or just a keystiroke to
continue

Comment lines

A “delay after” parameter (seconds) for every command.

All commands, all comment lines, all data polled from the
serial distribution network, and all keystrokes are echoed
into a protocol file. The system time of the Vectra PC is
also written into the protocol file before every command
line. Fig. 3 shows a test file and the corresponding proto-
col file.

50 October 1991 Hewlett-Packard Joumnal

automated Component Moniloring
System testing.

Loops or branches are not permitted within a fest file.
However, for each test file it is possible to select the
number of repetitions, and a batch feature allows queuing
of test files in any combination.

Any ASCII editor can be used for ereating and maintain-
ing test files.

Test File Development

The test files were developed in three steps. First, we
wrote high-level test scripts based on the external refer-
ence specifications, covering all of the functionality. Sec-
ond, we gave these scripts to the R&D engineers for re-
view. Third, we started development of the modular test
files, beginning with the most important ones (alarms and
inoperative conditions) and those that are tedious o test
manually. Tests were grouped into 100% automated tests,
runs with a few manual interventions, semiautomated
tests, and manual tests.

The test files improved in effectiveness over time. Up-
dates were performed constantly when new bugs were
detected in the software being tested.

When R&D had finished the implementation of all of the
system’s functionality, the development of all of the test
files was also complete. Thus, for all of the defect-fixing
rounds of testing, we ran almost exactly the same tests

and could show very clearly the trend of the defect rate
(see Fig. 4).

Results

With AUTOTEST, a test cycle now takes only seven work-
ing days. A test cycle consists of 60 hours of automatic
tests, mostly run overnight and on weekends, 45 hours of
semiautomatic tests, and 5 hours of manual tests. There
is also some destructive testing by selected experts,
which is done in parallel with the systematic testing. Test
documentation is complete when the testing is finished.
The system provides a complete regression test package

© Copr. 1949-1998 Hewlett-Packard Co.

Test File Protocol File

To Verify Pulse HR Alarms delay {sec) Running test file - DEMO. TST 02.03.88
A 8 Title : To verify Pulse HR alarms
MY M SR RARRBEBERRRRRBRRRBBERERRRER § - 2 r=E=msScwdadsssssieedpgasiiEsnmtsmantnsmEsS trrany o=
+ starfup settings required: 11:43:00 #z#
o alarms: non-latching 0 114300 #=#2 HERBEERBREEERF SRR
(] 11:49:00 #£## startup settings required:
**** Configuration: 0 114000 2= alarms: non-latching
Ecg/Resp, 5 Press, NBP, C.0., 2 Temp 0 11:49:00 ###
anat 5a02 Pleth 0 11:48.00 ### Configuration:
0 11:46:00 ### Ecg Resp, 5 Press, NBP, C.0., 2 Temp
** I 0.K. continue test eise press <ESC] 11:49:00 ### Sa02/Pleth
.......................... Pausetest - ----+-ecccnes " 11:45:00 #aE
T MBS RN S ERNR R R GRS RRRRBBBRERERBRE Y] 11:43:00 ##&# = i1 0.K. continue test eise press <ESC>
. alarmact 1 11:49:00 Test S!Upp!ﬂ
s . .gim1: 30 BPM 0 11:49:04 ### BRERHEHEB B RRGEB R B ERERT
sim! NORMAL SINUS RATE BPM 30 NSB 30 10 11:49:04 replayed automan file : alarmact
e L verify 0 11:49:117 ### sim1: 30 BPM
e 0 11:49:17 sim1 NORMAL SINUS RATE BPM 30
o “ PULSE = 30 [} 11:49:27 ##2 == verify:
seer obell (pu)] 1:49:27 ### R
** HA alarm "**** 0 11:48:27 ### *PULSE= W™ -
e Lt e 10 1 “g‘!? ### s X‘be“ [FU! waren
11:49:27 ### ***** HR alarm """ agf—
cp Get param. values and alarm/inop messages 0 \11 A49:27 ### RCHIEHARIAR ST
** ...change alarming parameter to PULSE 0 11:49:39 Data from device under test :
am alapu 10
Parameters
L]
< KR D 30
ABP ;120181 (30)
CVP i 4
RAP =42
RESP 1 20
Pulse bl ||
Sa02 : 97
NBP 1 o«T- (511511 (511)
co ¢o-T- (102,300 (0.0))
BLOODT : 351
T 1 26.0
T2 : 350
Alarms

* HR 30 < 40 --—

11:49:40 ### - - - change alarming parameter to PULSE
11:49:40 replayed automan file : alapu

Fig. 3. An example of a test, file and the resulting protocol file.

] New Functionality Added Bug Firing that can be ustjd for testing revisions and can be easily
- - adapted to testing new parameters.

We wrote one special test file that exercises the Compo-
nent Monitoring System with very fast random keypush-
ing. As long as the software was nol very stable, this test
file caused the system to crash [requently within a short
period. With normal testing, we would have had to wait
weeks to see so many failures. The R&D engineers liked
this test very much because it gave them a good chance
to trace the software components and find the causes of
the crashes quickly.

Number of Defects per Revision

0-
0.07 1.00 1.09 230 240 241 242 300 400 494 496 499 500 510 5.20

Revisions Tested Conclustan

AUTOTEST is an excellent example of an automated
structured testing implementation. Even though it seems
to be specially designed for the Component Monitoring
System, it is not. With some limitations (for example, no

Fig. 4. Defect rate trend as a result of automated testing.

October 1991 Hewlett-Packard Journal -~ 51
© Copr. 1949-1998 Hewlett-Packard Co.

keypushing) it can be used for testing any HP patient
monitor. It can be used simply for a form of guided test-
ing in which AUTOTEST tells the test operator what to
do and what the desired result is, and requests a key-
stroke P for passed or F for failed. This makes it possible

to have untrained people running the tests and still get
complete documentation. AUTOTEST runs on an HP Vec-
tra personal computer and is written in C, so it is porta-
ble and can easily be modified or extended.

Production and Final Test of the HP
Component Monitoring System

A vertically oriented material flow minimizes handling and simplifies
customization. Automated final test systems minimize human errors and

collect data for monitoring process quality.

by Otto Schuster and Joachim Weller

One of the keys to success in manufacturing a new prod-
uct is the concurrent design of the product and its pro-
duction processes from the very beginning of a project.
Therefore, a team of experienced manufacturing engineers
was integrated into the HP Component Monitoring System
project and physically located in the R&D laboratory. In
this way, product designs and production process designs
were able to influence each other before all details had
been worked out.

The plan was also to transfer the product to production
concurrently in Béblingen and in Waltham, Massachusetts.
Therefore, manufacturing engineers from Waltham joined
our team to cover division-specific aspects and to ensure
productive communication.

Another key to the product’s success was the definition
of manufacturing goals to which all parties were com-
mitted. The table below shows some of these goals and
compares the Component Monitoring System with HP's
previous generation of bedside monitors.

Total Part Number Count —67%
Vendor Count for Mechanical Parts —47%
Number of Printed Circuit Board Outlines —-50%
Autoloading Percentage +27%
Manufacturing Cycle —50%

52

October 1991 Hewlett-Packard Journal

Material Flow

To reduce material in process and o reduce manufactur-
ing cycle time, it is essential to streamline processes
without moving material back and forth. Therefore, we
built up a vertically oriented material flow. Products and
assemblies can be built independently up to the point
where they will be assigned to a customer order (see Fig,
1). This is supported by a product structure that allows
assignment to a customer order just before packaging.
For example, the ECG modules are all built identically up
to the last step, where the product is localized by apply-
ing the overlay label in the appropriate language.

Final Test

The objectives for the final test systems were:
Flexibility to support different types of devices under
test (DUT) without changing the test setup.

Use of standard hardware, or design and documentation
of nonstandard hardware according to HP standards for
manufactured products.

Self-test and self-calibration features wherever possible
to reduce maintenance.

Accuracy based on the specifications of standard instru-
ments that are calibrated periodically.

© Copr. 1949-1998 Hewlett-Packard Co.

Meatrun and
Manitoring

Parameter
Module Function Box

Parts

Function Box
hssembly

Install in
Tes! Boxes

* Depanelling
o Assembly

Final Safely
Test

Heatrun ang
Monitoring

Final/Satety
Test

-

Output Parameter

Butfers Wodule Function Card

Customize,
Configure,
and Label

Packaging

Packaging

Cansolidste
and Ship

To Customers

* A modular test concept that allows easy addition of new
parameters, that is, each type of parameter module has

its individual software module for specifications, test list,

test procedure, and drivers.

Ease of learning and operation, even for relatively un-
skilled personnel. This is achieved by a high degree of
automation, which makes it possible 1o operate the final
test systems with very little operator interaction. In addi-
tion, color coding on the display for device types and
status messages and automatic recognition of the device
under test are implemented. Instead of manual adjust-
ments, calibration data is generated by the final test sta-
tion and stored in the EPROM of the DUT. To avoid hu-
man errors, test results do not have to be interpreted by
the operator.

» Data accumulation for statistical process control.

L]

Function Box

Systemize and
Configure

Packaging

Production
Line
Rack Assambly
and Tes!
Assign to
Customer Order

Packaging

Fig. 1. HP Component Monpitoring
System production material flow.

Integration of Test Systems

The final test systems are based on HP 9000 Series 300
Pascal workstations, multiprogrammers, diverse HP-IB
(IEEE 488) instruments, and a parameter module inter-
face, which provides the communication link between the
DUT and the workstation. All systems are connected to a
shared resource manager for sharing the files required for
operation and archiving files containing test results. This
includes both the final test systems and the temperature
cycling test systems.

An HP-UX workstation connected to the shared resource
manager provides access to the files for other HP-UX
terminals on a local or wide area network (see Fig. 2).

October 1091 Howlett-Packard Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

Final Test System #1

Pascal
Work-

slation DK'— =

Fallure
Summary
and Hit Lists

HP-UX
Utilities
and

Distribution =y Scripts

Curves Test Operating

Software

Result \
Files \

File Access

Archiye Shared By
and Log Resource
Files Manager
System

Parameter Module

Intertace

Monitoring Process Quality

To improve quality and keep it at a high level, it is impor-
tant to analyze process data online. Therefore, the test
results of the last 200 devices of each device type are

Date: Fri Nov 30 16:00 MEZ 1990

Test: M1016 PowerConsumption_Test

—150 % 0.0%
—140 % 0.0 %
—130 % 0.0 %
=120 % 0.0 %
=10 % 0.0 %
~100% ~MIN- 0.0%
=90 % 1.0% =
—80% 0.0 %
—70 % 0.5%
—60% B.5% sereraranens
—80 % 55% srensesnne
—40 % 12.0% sossssassnivsnsnsinion
—30 % T4 % ervnrnrariesnnenin
—20% 274%
—10 % 0.0 %
0% -NOM-249%
10 % 0.0%
2% B.5 % seersnsnnes
0% 1.5% o
40 % 0.0 %
50 % 1.5% o
60 % 0.0%
0% 05% -
B0 % 0.0 %
80 % 0.0 %
100% - MAX- 0.0%
10 % 0.0%
120 % 0.0%
130 % 0.0%
140 % 0.0 %
150 % 0.0%

- evaluation test #2: PowerConsumplion_Test datacount = 201 -

-« - -Relative- - - -
mean = —-18%
peakmin = —90%
peakmax = T0%

<« -Absolute- - - -

mean = 1.061343
peakmin = 0.288000
peakmax = 1.148000

stddey = 0,024333 siddev = 2.516335
p= 1.324678
cpk = 1.071605

Fig. 3. Final test analysis.

54 October 1991 Hewlett-Packard Journal

| PlEl!lﬂar Module Interface
HP-IB Instruments
Iullipmumr

Final
Test System #n

Heat Chamber §

MES

Machine

Control Fig. 2. Integration of the final test

systems with the temperature cy—
cling test system.

held on disc for data analysis. Three different levels of
information can be generated. The first level is the yield
of printed circuit boards or modules. A diagram generated
daily shows trends and can be used as a trigger for a
more detailed analysis. This analysis represents the next
level and includes failure summaries and failure hit lists
for individual tests. The third level provides the distribu-
tion curve for test results over the test limit range along
with the following statistical process parameters (see Fig.
3): mean, minimum and maximum values, standard devi-
ation, ¢, value (process capability), and ¢y value (pro-
cess controllability).

This data is not only used for process monitoring. li has
been used during Component Monitoring System prototyp-
ing to qualify each test and to verify the specification
limits. Thus, early information about the producability of
a new product is obtained well before the product is in-
troduced into production and valuable feedback is pro-
vided to the designers.

Conclusion

The challenge for manufacturing was not only that the
Component Monitoring System was a new product, but
also that it was our first product designed in surface
mount technology and the first product for the Boblingen
surface mount technology center. The parallel ramp-up of
production in Boblingen and in Waltham has proven that
concurrent production process design is not just an alter-
native, but rather the only way to succeed.

Acknowledgments

We would like to thank all of the people who contributed
to the design and implementation of the Component Mon-
itoring System manufacturing process, in particular
Giinter Hasert, Wolfgang Strenzl, Frank Keil, and Dieter
Frank from the Boéblingen Medical Division manufacturing
development engineering team and Frank Lyons, George
Kinzie, and Chris Leary from the Waltham Division.

© Copr. 1949-1998 Hewlett-Packard Co.

Calculating the Real Cost of Software

Defects

Using data from a well-established software metrics database
industry profit loss model, a method is developed that computs

cost of dealing with software defects.

by William T. Ward

In response to the HP corporate-wide 10x software quali-
ty improvement initiative, much atiention has been fo-
cused on improving the quality of software products de-
veloped throughout HP. The motivation for software
quality improvement is most often expressed in terms of
increased customer satisfaction with higher product quali-
ty, or more generally, as a need to position HP as a lead-
er in quality software development.

A more fundamental motivation to support the initiative
for higher software quality can be developed when soft-
ware defect cost data is considered. The data presented
in this paper is drawn from an extensive software project
database maintained at the P Waltham Division for prod-
uct releases over the past five years. When software de-
feet cost caleulations are performed on this data, a very
compelling “bottom line” perspective on software quality
emerges; software defects are very expensive and early
defect prevention and removal techniques can substantial-
ly enhance the profit realized on software products.

This paper will present a general model that can be used
to caleulate software defect cost data for any software or
firmware product. Data from actual HP Waltham projecis
will be used to provide examples of software cost calcu-
lations.

The Need for Metrics

As an example of the need for substantive software quali-
ty cost data, consider the situation a project manager
might encounter when attempting to justify the purchase
and use of a new software development tool such as a
static code analyzer, Il the cost of the tool is $20,000 and
il there is reliable data to suggest that the tool will un-
cover 5% of the total number of software defects during

Soltware Development Phases

Requirements Analysis

Design
Code
Unit Test
Integration
Metrics System and Acceptance Tests
Database Release

. Postrelease

Fig. 1. Software life cycle and the phases the software quality
engineering metries database covers

typical use, is the project manager justified in acquiring
and using the tool?

To provide answers to this type of question, it is impor-
tant to have access 1o a reliable database of software
quality metries. Such a database is maintained by the
software quality engineering group at the clinical systems
business unit of HP's Waltham Division. This database has
become an essential component of software quality activi-
ties at HP Waltham and is invaluable for such tasks as
project scheduling, resource planning, project and product
quality status reporting, and software defect cost calcula-
tions.

In addition to maintaining the metrics database, the soft-
ware quality engineering group works with R&D in festing
and process improvement activities.

Software Quality Metrics Database

Fig. 1 indicates the development phases of a typical soft-
ware project, with the phases indicated in which metrics
are collected and stored into the software quality data-
base. Data is gathered from a variety of sources including
software defect logging, product comparison studies, proj-

0
Software Quality

P Engineering Tests

; Code
(®) - AL
e Problem Found by
Code Submitted to Software Quality
Software Quality Engineering and
Engineering for Reported to
Retest Development Group
A
l O) Qw
Production Engineering Develpment Group
Builds Shippable Investigates and
Software Verifies Problems
A
® @w
Development Group Development Group
Rebullds the Debugs and
Product Code Fixes Code
5 5

Development Group 4
Tests the Fix

Fig. 2. Software delect find and fix cyele

October 1991 Hewlott-Packard Journal - 55

© Copr. 1949-1998 Hewlett-Packard Co.

ect post-mortem studies, code complexity and size analy-
sis, and project schedule and resource plans. The physical
data resides mainly in a standard HP STARS* database,
which has been augmented with additional fields, files,
and reporting utilities. All of the products represented in
the metrics database are firmware-based medical devices
such as critical care monitors, arrhythmia analysis com-
puters, and clinical databases.

Figs, 2, 3, and 4 represent various types of useful data
that can be extracted from the database. Fig. 2 docu-
ments the steps that are typically required (o find, fix,
and retest a defect discovered by the software quality
engineering group during integration and system or accep-
tance testing. The engineering effort lor this activity,
which is shown as 20 hours, represents the average effort
for finding and fixing one typical software defect. This
value has been calculated using hundreds of data points
from multiple software projects that have been tracked
with the software quality database. Fig, 3 is an example
of how an accurate schedule for the integration through
the release phases can be developed using historical proj-
ect data from the database. In this case, it is clear that a
stable and linear relationship exists between product code
size and resultant calendar time. Finally, Fig. 4 tabulates
various software metrics from multiple software projects.
This data can be very useful for developing project com-
parison studies.

The data presented in these figures is a small subset of
the data that exists in the database. This specific data has
been presented because of its applicability to software
defect cost calculations.

Looking for Software Defect Costs

Software defect costs can be investigated using a variety
of different approaches. For example, costs can be calcu-
lated on a prerelease or a postrelease basis, or costs can
be determined per defect or per project phase, or costs
can be weighted based on code size or programmer pro-
ductivity. The software defeci cost data developed in this
paper focuses on the cost per prerelease software defect
that is found and fixed during the integration through the

*The Software Tracking and Reporting System, or STARS, is an HP internal database
for tracking software defects.

300
g 200 -
=
-
]
*
§ 100 —-
[&]
| |
0 T | {
0 5 10 15

Calendar Time (Months)
KNCSS = Thousands of Noncomment Source Statements
Fig. 3. Calendar time for integration through release phases versus

code size for HP Waltham clinical systems business unit projects.
Each point represents a specific project in the database.

56 October 1991 Hewlett-Packard Journal

Project A | Project B | Project C | Project D | ProjectE | Project F

Code Size

(KNCSS) 125 m 270 45 105 35

Calendar
Months

(Integration 9] 12 4.5 8.5 3
Through
Release)

Number of
Defects
Requiring
Fix

269 133 443 10 20 137

Prerelease
Defect 2.15 112 16 25 0 4
Density

Fig. 4. Typical software metrics for projects in the software quality
database.

release phases of project development. This approach is
used because of the abundance of reliable data points
available for study and because of the potential utility of
the results.

The Software Defect Cost Equation
The calculation of prerelease software defect cost pro-
posed here is based on the formula:

Software Defect Cost = Software Defect Rework Cost
+ Profit Loss

Software defect rework cost is determined by the amount
of effort and expense required to find and fix software
defects during the integration through release phases of a
software project. Profit loss is the revenue loss that is
caused by lower product sales throughout the entire post-
release lifetime of the product. The lower sales factor is
caused directly by the lengthy find and fix cyele of pre-
release defects that force a schedule slip and result in a
loss of market-window opportunity.

Many other factors could probably be used to determine
the software defect cost but our data shows that the re-
work cost and profit loss factors have a major impact on
the result and will supply a close first approximation of
the final value. Table 1 lists a set of product and project
software factors that will be used to calculate a sofiware
defect cost value. All of these factors represent typical
values derived from our database.

Table |

Typical Values in the Metrics Database
Code size 75 KNCSS
Calendar time for pre- 6 months
release testing
Number of prerelease 110 defects
defects found and fixed
Prerelease defect density 1.5 defects/KNCSS

Software Defect Rework Calculation

This calculation is very simple and is based on data pre-
sented in Figs. 2 and 4 and Table 1. A typical product will
have 110 software defects found and fixed during the
project test phase. Each of these defects will require 20

© Copr. 1949-1998 Hewlett-Packard Co.

engineering hours to find and fix. The total prerelease
software rework effort then is:

Software Defect Rework Effort = 110 x 20 = 2200
engineering hours.

To convert this effort value to dollars requires the $/hour
software engineer factor. As a close approximation of an
industry standard value, we will use $75/hour as the stan-
dard charge for the services of a software engineer. (This
includes basic salary + administration overhead of 75%).

Software Defect Rework Cost = 2200 hours x
$75/Mhour = $165,000.

On a per-defect basis, rework cost can be determined as:

Rework Cost per Software Defect = 20 hours X
$75/hour = $1500.

These calculations are useful in highlighting the true
waste factor of poor software quality. Each software de-
fect is responsible for $1500 of unnecessary expense, and
for a typical project $165,000 is required for software
rework.

Software Defect Profit Loss Calculation

The other major factor contributing to software defect
cost is product profit loss because of missed market-win-
dow opportunities and the resultant loss of product sales.
In other words, if a product release date slips because
the software defect find and fix cycle is unnecessarily
long, then potential product sales are irretrievably lost
and overall lifetime profit dollars will be less. Such fac-
tors as rapidly obsolete technology and the availability of
competitive products also contribute to the potential loss
of sales.

Several industry models 12 have been proposed that can
be used to quantify the profit loss factor. Fig. 5 presents
one of these models and will serve as the basis for our

calculations. For the following calculations we assume a
1000-unit customer base of a $20,000 product with a 15%
profit. margin, This will yield $3,000,000 in lifetime profit.
Assuming a six-month slip in product release because of

50% Product Cost

Ship Product
Development 6 Months Late

Cost Overrun

9% oo High

Source: McKinsey & Co

Fig. 5. Percentage of profit loss associated with product release
problems. The type of products this data represents have a
short produet life of around five years, Examples include

word processors and other consumer electronic

products.

! Code Size: 75 KNCSS
Software Tes! Phase: & Months
Number of Prergiease Defects: 110

Software Rework “Waste™: $165,000
[$1500 per defect)

Profil Lags Due to Rework: §1,000,000
Approximately S9000 per defect)

“Total Cost of Software Defects: §1,165,000
(810,500 per defect)

*Sottware Rework Cost + Profit Loss

Fig. 6. Software defect cost summary for a typical software
project.

the software defect find and fix cycle, Fig. 5 suggests a
33% loss in profit.

Profit Loss = $3,000,000 x 33% = $1,000,000

Using the data on the number of prerelease defects given
in Table 1, on a perdefect basis, profit-loss can be deter-
mined as:

$1,000,000/110 defects =~ $5000 per defect.

It may seem extreme to say that every prerelease defect
causes a product to be late to market. However, because
of the nature of our business, it is important that our
products perform reliably in the critical-care medical envi-
ronment. This means that each defect of a high enough
severity level that is found during prerelease tests must
be fixed and retested before final release. It is this test,
fix, and retest cycle that delays product release and con-
tributes to the cost of poor software quality.

The $1,000,000 Opportunity

Fig. 6 summarizes the software defect cost data calcu-
lated in this paper. The variables used in these calcula-
tions will vary from one organization to another, but the
fundamental algorithm for computing software defect cosl
is applicable to most cases. Although the product cost
and profit margin numbers used here are for illustrative
purposes, they are typical for large software systems.
Therefore, with the potential for a cost of §10,500 per
defect and $1,165,000 per project, there is ample financial
hasis for a number of potential remedial actions.

Quality Awareness. Most software engineers probably have
no idea about the cost of reworking software to find and
fix a defect once the code enters the integration and tesl
phases. They should be made aware of the savings possi-
ble if more defect detection could be done in the early
stages of product development.

CASE Investment. There are a large number of CASE tools
and methodologies available to augment the software de-
velopment process. Examples of modern CASE technolo-
gy include static code analyzers, debuggers, execution
profilers, formal inspections of design and code, struc-
tured analysis and design, and so on. Most of these tech-
nologies can be acquired for a financial investment of
$10,000 to $30,000. If each software defect has a $10,500

October 1991 Hewlet-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

cost, then it is clearly appropriate to consider the use of
CASE to improve software quality.

Software 10 < Program: When it becomes clear that soft-
ware quality improvements can yield substantial financial
rewards, then the goal of a 10 % gain in software quality
assumes additional impetus. Consider that a 10 % im-
provement of the number of prerelease software defects
for the typical software project presented in this paper
would yield almost an additional $1,000,000 in profit. That
figure is a powerful bottom line motivator.

Conclusion
This paper has presented a technique that can be used to
calculate software defect cost values. Historical HP Wal-

tham software quality and project data has been applied
to cost calculations so that realistic results might be ob-
tained. Although additional investigations, such as a deter-
mination of postrelease software defect cost, might pro-
vide a more detailed analysis of cost, the data presented
in this paper is accurate and provides compelling finan-
cial motivation for improved software quality.

References

1. B.C. Cole, "Getting To The Market On Time.” Electronics, Vol. 62,
no. 4, April 1989, pp. 62-67

2. D G. Reinertsen, *“Whodunit? The Search for the New-product
Killers.” MeKinsey and Company Report, 1983, pp. 35-37.

A Case Study of Code Inspections

The code inspection process is a tool that can be used early in the
software development cycle to help improve the quality of software
products and the productivity of development engineers.

by Frank W. Blakely and Mark E. Boles

Code inspections have become an integral part of the
software development life cycle in many organizations.
Because it takes some project time and because engineers
initially feel intimidated by the process, code inspections
have not always been readily accepted. Additionally, there
has not always been enough evidence (meirics) to prove
that for the time and effort invested, the process has any
value in reducing defects and improving overall software
quality. Since the early days, the process has become bet-
ter understood and documented, and recent articles have
provided concrete metrics and other evidence to justify
the value of the process.!:=#

This paper describes our experiences in bringing the code
inspection process to HP's Application Support Division
(ASD). We describe both the positive and negative find-
ings related to using code inspections. Although we only
have metrics for one project, our main goal here is to
present how we implemented the inspection process and
to illustrate the type of data to collect and what might be
done with the data.

Background

In 1988 our division was in the process of searching for
best practices and methodologies that could help us meet
or exceed the company-wide 10 x quality improvement
goal. Design and code inspections were two of the meth-
odologies that we proposed. Management agreed to sanc-
tion a pilot project using code inspections, with imple-

28 October 1991 Hewlet-Packard Journal

mentation of a design inspection process deferred to a
later date.

The authors attended the software inspections class given
by HP’s Corporate Engineering software engineering train-
ing group. This knowledge was then imported to our divi-
sion, and several classes were taught to the engineers fo
prepare them to be participanis in the code inspection
Process.

To begin using the code inspection process on a pilot
basis, a software project that involved enhancing an exist-
ing product was selected. To ensure that we could im-
prove the process and learn from our experience, we de-
cided to record and analyze the results from each code
inspection. This way we would have some data to back
up any claims we had regarding the value of the process.
The metrics and data we decided to collect and analyze
included:

» The criteria to use in selecting modules to inspect.

» The criteria for selecting participants in the process.

» The methodology used while performing the inspection.

» The relative effectiveness of code inspections in improv-
ing quality versus standard testing via module execution.

» The merits of doing code inspections before or after
bench testing a software module.

» The number of defects found in a product in the first year
after release that might have been found in code inspec-
tions.

© Copr. 1949-1998 Hewlett-Packard Co.

* The costs of addressing defects found in the first year
after release during the inspection phase versus during
the maintenance phase.

Engineers from the guality and productivity department of
our division taught the inspections class before starting
the pilot project. They also acted as moderators for the
formal code inspections. R&D software engineers from
several different projects participated as authors, readers,
and inspectors. There was also a technical marketing en-
gineer who participated as an inspecior.

Implementation of the Code Inspection Process
Developing a set of criteria for which modules to inspect,
who should participate in the inspections, and what meth-
odology to follow were the first issues that needed to be
resolved in implementing the inspection process. Two
methodologies were used in our implementation: formal
and informal inspections. The pilot project used the for-
mal, more structured process presented in the inspections
class. while later projects nsed both formal and informal
methodologies. The comparative success of the two meth-
odologies has not been fully determined, but some of the
results are described later.

Module Selection. Because a sofiware product is made of
many modules, the time it would take to inspect every
module might be prohibitive. Therefore, criteria must ex-
ist to determine which modules should be inspected. Two
criteria were used to identify the modules fo be in-
spected. First, modules were selected only if they were
modified in the course of the project (remember this was
an enhancement project). Second, the complexity of the
modified modules was determined. Module complexity
has been shown to be a good indicator of the defect
proneness of a software module—the higher the complex-
ity, the greater the likelihood there are defects. Therefore,
complexity was used to identify those modules that were
the best candidates for inspection. The original plan was
to determine the complexity of modules using the
McCabe complexity tool,! which is based on the McCabe
complexity metrie.” Unfortunately the MeCabe tool could
not accurately identify the complexity of the modules
written in MS-DOS macro assembler language. This led to
attempts to roughly quantify the complexity of these mod-
ules, relying on the opinion of the module’s author as to
its complexity. The result was that modules were in-
spected based on the amount of modification to the mod-
ule and a rough estimate of their complexity.

Participant Selection. A code inspection is a structured
process in which each participant has a clearly defined
role. Inspection participants were selected based on their
knowledge of the language in which the module was writ-
ten. Attempts were also made to select engineers who
were also knowledgeable about the high-level structure of
the product. We could not find many engineers with this
knowledge so this criterion was abandoned and knowl-
edge of the development language became the predomi-
nate criterion.

Formal Code Inspections. The methodology we used for
formal code inspections required that the author select

the module to be inspected and prepare inspection pack-
ets for the moderator, code reader, and inspectors.” The
code inspection packet was distributed two days before
the scheduled inspection date. The packet consisted of a
cover sheet and listings (with line numbers) of the mod-
ule to be inspected. The cover sheet detailed the time
and place of the inspection meeting, the participants, and
a brief description of the module to be inspected. Be-
cause some of the engineers who participated as inspec-
tors and readers were unfamiliar with the design of the
modules, additional information was sometimes added to
the packets to improve the effectiveness of the process.
Additions included module descriptions, pseudo code, and
design overview documents describing the design of the
module.

Before the meeting the moderator was responsible for
confirming the availability of the meeting participants for
the time and date of the inspection. Inspectors were re-
quired to prepare for the inspection, and if they could not
guarantee adequate preparation, notify the moderator so
that the inspection could be rescheduled. Usually on the
the day before the meeting, the moderator would check
to make sure that evervone was ready.

During the meeting the following rules were followed to
avoid conflicts and ensure a productive process.
Critiques of the coding style used in the module being
inspected were avoided.

Problems were to be indicated and identified, but solu-
tions were not to be offered during the inspection meet-
ings.

Comments were to be phrased in a nonthreatening way,
focusing on what the module did, as opposed to what the
author might have done.

Antagonistic ways of expressing points of view were
avoided.

The meetings were limited to one hour. Data from other
divisions showed that longer meetings drained the inspec-
tion team and decreased their effectiveness.

Two forms were used to gather the data from the code
inspections: the code inspection log and the code inspec-
tion detail log (see Fig. 1). The code inspection log de-
seribed the module inspected, the participants, their prep-
aration time, the hours of engineering effort involved, the
number of lines inspected, and the number of problems
identified. The defects identified were categorized by se-
verity, and whether and how they could have been found
in the absence of code inspections. The code inspection
detail log identified a problem by page and line number
in the module source, and provided a description of the
problem and its severity. At the end of the meeting a de-
cision was made as to the advisability of scheduling a
reinspection of the module if the number of problems
found was unacceptable. If the author made extensive
changes to the inspected modules while fixing inspection-
identified defects, this would possibly create a need for
reinspection.

*We actually had two inspectors. The author acted as an inspector

October 1991 Hewlett-Packard Journal - 59

© Copr. 1949-1998 Hewlett-Packard Co.

CODE INSPECTION |
Page f Date _ __/____/__
Page____of Date__ /| P90——0 DETAIL LOG we
Prob] Page: Problem Description Severity
CODE INSPECTION LOG no. |Line #
TEAM
MODULE TO BE INSPECTED
PREP MEETING
ROLE NAME TIME TIME
Moderator
Author
Reader
Inspector
Total Time —
TOTAL ENGR EFFORT # LINES
NUMEBER OF CRITICAL PROBLEMS
TOTAL BY PROD/SYS TEST BY CUSTOMER
NUMBER OF NONCRITICAL PROBLEMS
TOTAL BY PROD/SYS TEST BY CUSTOMER Severity Critical Noncritical Enhancement
a) {b)

Fig. 1. (a) Code inspection log. (b) Code inspection detail log.

In the postinspection meetings, the moderator and the
author met so that the moderator could give the collected
information to the author. The author was then responsi-
ble for implementing the defect repairs. If enhancements
had been identified in the inspection, these were either
accepted or rejected by the author and the moderator.

Informal Code Inspections. Informal code inspections were
not a part of the pilot project. Several informal code in-
spections were performed on later projects and as a part

Measure ’ Data
Pilot Project
Lines of NCSS Code Inspected 1516
Engineering Hours of Preparation 55.9
Engineering Hours in Meetings 304
Number of Defects Found 2
Number of Enhancement Requests 4
Follow-On Projects (Formal)
Lines of NC5S Code Inspected 196
Engineering Hours of Preparation 45
Engineering Houts in Meetings 4.0
Number of Defects Found 1
Number of Enhancement Requests 0
Follow-On Projects {Informal)
Lines of NCSS Code Inspected 1154
Engineering Hours of Preparation 0
Engineering Hours in Meetings 53
Mumber of Defects Found 1
Number of Enhancement Requests 0

Fig. 2. Summary of code inspection statistics.

60 October 1891 Hewlett-Packard Journal

of the pilot project’s CPE (current product engineering)
or postrelease activities. There was no preparation re-
quired for these informal code inspections. The code’s
author would request that another engineer sii and look
over a module or a submodule at the time of the meeting.
There was no moderator, and no formal documentation of
the process. Usually, the engineer who was asked to in-
spect was familiar with the overall design of the module
being inspected.

Data Collected
As mentioned earlier we tried to collect data that would
enable us to evaluate the effectiveness of the code in-
spection process. The code inspection data collected in-
cluded the number of:

* Lines of noncomment source statements (NCSS) in-
spected

® Engineering hours of preparation required

* Engineering hours spent in code inspection meetings

® Defecis and enhancement requests found during the
meeting.

Because the effort required to fix a defect is the same
regardless of how it is found. no data was collected on
the time taken to fix defects or implement enhancements.
Also, because the implementation of the informal code
inspection process was done in a way that permitted a
wide variation in the statistics collected, insufficient data
exists to determine clearly the effectiveness of informal
code inspections. Fig. 2 summarizes the statistics from
our pilot project and some follow-on projects in which

© Copr. 1949-1998 Hewlett-Packard Co.

Linzs Percent
Companent inspected NCSS Inspected
Pilot Project
Server %1] 7890 122% [
BC 555 2234 25% |
| Both 1516 l 30235 _ 50%
| Follow-On Projects [Formal)
| pC [1% | 2345 1.0%
Foliow-On Projects (informal)
Server | 135 7850 20%
PC 998 2346 15%
Both 1154 30236 38%
NCSS = No t Source S

Fig. 3. Major modules and percent of code inspected.

both formal and informal code inspection processes were
used. Fig. 3 shows the major modules and the amount of
code inspected from each module.

From the data shown in Fig. 2, the ratio of preparation
time to inspection time can be calculated as 1.83 for the
pilot project, and 1.13 for the formal inspections done for
a follow-on project. The ratio for all of the projects was
1.76. The inspection rate for the pilot project was 200
lines of NCSS per meeting hour.” For the follow-on proj-
ect it was 196 lines, bringing the overall rate to 199 lines
per meeting hour. The defect finding rate was 0.243 de-
fects per engineering hour (preparation hours plus meet-
ing hours) for the pilot project and 0.118 for the follow-
on project, bringing the overall defect finding rate to
0.233. Work done by other HP divisions showed that for a
one-hour meeting, 200 lines of code is about the most
that can be covered before the defect finding rate begins
to decline.

The metrics for preparation time and lines per meeting
can be used to estimate for future projects the amount of
time required for inspections so thal projects can budget
in their schedules a reasonable amount of time for in-
spections. The defect finding rate can be used to corre-
late between the effectiveness of different types of testing
and the complexity of modules so that the overall valida-
tion of the code design can be optimized.

During the development phase of the project, test log
sheets were used to colleet data about defects found dur-
ing testing and the number of hours devoted to testing.
This data was used to help analyze traditional testing
versus code inspections.

Defects reported by customers against the pilot product
during the first year after its release were also collected.
The objectives of gathering this data were:

To determine whether the defects were in modules that
had been inspected

To determine why, if the defects were in inspected mod-
ules, they were not found during the inspection

To determine why modules with defects were not in-
spected

*For each formal inspection. there were 4 participants and a total of 30.4 hours were

spent in meetings. Thus, 304 enginearing hours in meetings equals 7.6 meeting hours,
resulting in 200 lings per meeting holr (1516 lines/7 6 meeting hours)

« To determine the relative costs of addressing the defects
found by customers compared with the cost of putting
more effort into performing code inspections.

The data collected also included the number of hours of
online and offline support spent identifying and verifying
the problems, the number of engineering hours spent
identifying the causes, the appropriate fix for the defect,
and whether the modules in which the defects were
found were inspected. Additional information allowed
estimation of the time required to perform code inspec-
tions on those modules not inspected.

Comparison to Testing Process

For comparison with the traditional testing process (i.e.,
module execution), defects for the pilot project were
categorized according to the method used to find the de-
fect and the defect cause. Fig. 4 shows this categorization
for the pilot-project defects. Note the inclusion of custom-
er-found defects, Fig. 5 shows the severity of defects
found classified by severity and test type. Note that in-
spections found defects in each of the standard severity
categories.

Figs. 4 and 5 do not reflect comment defects or defects
resulting from incorrect design. Both types of defects
were found and noted but not counted.

If Inspections Had not Been Done

The defects found by code inspections were analyzed to
determine whether they might have been found if code
inspections had not been done. While these classifications
are not certain, they were our best determination based
on knowledge of the produet, the test environment, and
the way in which the product would be used. Fig. 6
shows where in the process we think certain defects
would have been found if they had not been caught by
code inspections.

As a further aid in analyzing the effectiveness of code
inspections as a verification tool, the defects found during

BT
L 0+ e
E 15+
g T E,;
2 : . . -_\1’
5+ il 77
~ |l il
Alpha Inspections Product System Customer
Test Test Test

Methods of Defect Detection

Defect Causes

I Operating System

./ Differences B Operating Sy
[1171] Existed in Some Previous Release
£524 Datacom Changes

Fig. 4. Defects categorized by cause and methods used to detect
the defects

61

Oetober 18691 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

B
20
L3
2
2 1
)
a u . R
£ e
» rx:x'l'j
ST | | o)
i |
as . ' | |
Alpha Inspections Product System Customer
Test Test Test

Methods of Defect Detection

Defect Severity;

[T critical

Serious
Medium

EES Low

Fig. 5. Defects categorized by severity and method of detection

inspections were divided into categories based on the
following questions about each defect.

» Would the defect have been found by the existing test
process?

* Could a test be devised to find those defects that would
not be found by existing tests?

* Would customers find those defects that would not be
found by existing tests?

* Would some of these defects not be found by any of the
above methods?

Of the 21 defects found by code inspections, only four
could have been found with new fests.

Defects Found by Customers

An analysis was made of the defects found by customers
in the time since the pilot product was released. This
allowed us to attempt to determine why the defects were

not identified and fixed before the release of the product.

Fig. 7 shows the distribution of defects found by custom-
ers and the reasons associated with the defects. These
reasons include:

» The defect was a global error, not specific to a module or
modules.

» The defect existed in a dependent product.

Number of Defects
w
|
I

Probably Found
by Test

Probably Found
by Customer

Probably Not
Found

Fig. 6. Distribution of where code-inspection defects may or may

not have been found if they had not been found during the code
inspection process.

62 October 1991 Hewlett-Packard Journal

» The module was not inspected because it was not modi-
fied. This also indicated that our test suites were not thor-
ough enough.

= The module was not inspected because modifications
were not considered significant.

= The module was inspected, but the defect was not identi-
fied.

The defects classified in the first two categories were
those for which a code inspection could not have identi-
fied the defect.

The cost of having customers find defects in the product
compared to the cost of using code inspections to find
these defects was measured by collecting cost informa-
tion from the response center,” support engineering, R&D,
and test and manufacturing. The average time of a re-
sponse center call was determined and used to estimate
the response center cost of handling a defect. The cost of
the time spent by the support engineer was determined
based on the time spent in responding to calls about de-
fects in the product. The cost of the time spent by devel-
opment engineers was based on the time spent identifying
the cause of the defect, the time to fix it if necessary,
and the time required to test the defect once it was fixed.
Estimates of the time required to perform system testing
and the manufacturing costs were also collected. The
results showed that it costs approximately 100 times
more Lo fix a defect in a released product than it costs to
fix a defeet during the code inspection phase.

One important cost that cannot be directly measured in
currency is the loss of customer satisfaction when the
customer finds a defect. Because this cost is hard to
quantify, it is sometimes ignored, but the fact is that it
does affect the profitability of products.

*The response center is the primary contact for customers and HP figld personnel 1o obtan
help with HP software

e
A
g 4T ' 7
s r
[=] ¥
s
8
E 2t trr
= 3
Vo
- A | v
A ; ¥ A A
Global Not Qur Not Insignificant Inspected
Module Modified Modification but
Net Found

Reason for Defect

Fig. 7. Defects found by customers.

© Copr. 1949-1998 Hewlett-Packard Co.

Benefits

Besides the cost savings realized by finding and fixing
defects before they reach the customer, there are other
benefits associated with doing code inspections. These
benefits are not easy to measure, but they do have an
impact on quality and productivity.

Code inspections allow defects to be found early in the
product development cycle. This has the benefit of reduc-
ing the number of product builds and certification cycles
required to complete the development of a product. This
benefit is difficult to quantify because there is no way to
measure the build cycles that might be required for a giv-
en number of defects. However, one product build and
certification cycle is a minimum of 40 hours in our envi-
ronment.

» The code associated with a defect found during a code
inspection is immediately identified at the inspection.
When a defect is found by testing, all that is known is that
something somewhere doesn't work correctly, and the
additional work necessary to identify the lines of code
that are at fault is unknown.

Because code inspections require a great deal of commu-
nication among the participanis, cross training and idea
sharing are byproducts of the inspection process. Other
engineers involved become familiar with modules they
did not write, and acquire a better understanding of the
entire product. Also, engineers from other projects ac-
quire a better understanding of products other than their
OWTL.

Issues
Four issues came out of the code inspection process.
These were in the area of procedures or aspects of the

implementation rather than condemnations of the process

in general.

First, the primary consideration in selecting inspectors
was their ability to read and comprehend the program-

ming language being inspected. A lack of understanding
of the design was not considered an impediment to par-

ticipation. However, this was an impediment to making
the inspections as effective as possible because the in-
spectors could not always effectively identify situations
where the implementation did not match the intended
design.

This led to the second area of difficulty—the need for

formal design reviews. The lack of formal design reviews

results in engineers outside of the project having little
familiarity with the details, or even in some cases with

the overall design of a product. A lack of a design review
process inhibits the effectiveness of code inspections on

projects with a small number of engineers.

The third issue involves deciding when a module should
be inspected. We determined that the code inspection
process should be used after the developer believes that
the designed functionality is correctly implemented, and
before testing is done. All inspectors and readers should
be familiar with the overall product design and the imple-
mentation of the module being inspected.

Finally, the defects that were missed and could have been
found in the inspection process indicated that we need to
find a way to improve the methods used to identify po-
tential defect areas during the process.

Conclusion

Based on the data collected about the use of code inspec-
tions, and the data concerning the cost of finding and
repairing defects after the product has been released to
the customer, it is clear that the implementation of code
inspections as a regular part of the development cycle is
beneficial compared to the costs associated with fixing
defects found by customers.

The formal code inspection process is a significant bene-
fit in fostering quality and productivity in product devel-
opment. The formal process is structured and requires
documentation and accountability. These attributes make
it easy to measure and improve the process. From our
experience with informal inspections, it is not clear
whether the process provides any benefits. However, as
an aid to improving the quality of the implemented code,
it is worth further investigation.

Acknowledgments

We would like to thank Jim Scaccia, Bill Toms, Bob Dev-
ereaux, Frank Heartney, Don Darnell, Guy Hall, Jim Le-
wis, Bruce Smith, and Peggie Silva for their participation
in the code inspections that were performed. A special
thanks to Sherry Winkleblack for providing an environ-
ment that made this type of experimentation possible.

References

1. M. E. Fagan, “Advances in Software Inspections,” IEEE Tronsac-
tions on Saftware Engineering, Vol. SE-12, no. 7, July 1986, pp.
T44-751.

2. M. E. Fagan, “Design and Code Inspections to Reduce Errors in
Program Development,” IBM System Journal, Vol. 15, no. 3, 1976,
pp. 182-211.

4. T. D. Crossman, “Inspection Teams, Are They Worth 1t?" Proceed-
ings of the Second National Symposium, EDP Qualily Assurance,
Chicago, Illinois, March 1982

4. W. T. Ward, “Software Defect Prevention Using McCabe's Com-
plexity Metrie,” Hewlett-Packard Jowrnal, Vol. 4, no. 2, April 1989,
pp. G4-69.

5. T.J. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, Vol. SE-2, no. 4, Dec. 1976, pp. 308-320.

October 1991 Hewlett-Packard Journal - 63

© Copr. 1949-1998 Hewlett-Packard Co.

Authors

October 1991

6 Component Monitoring System

Christoph Westerteicher

Chris Westerteicher was the
project manager for the HP
Companent Monitoring Sys-
tem computer module and
displays. As a result of his
team’s efforts, production of
the HP Component Monitor-
ing System has been auto-
mated and streamlined to a
major extent. With parts standardization, only 300
parts are needed for the entire system. Chris joined
HP's Bablingen Medical Division in 1980, shortly after
earning a diploma in electrical engineering from the
University of Stuttgart. He became an R&D designer
of displays and interface cards for HP medical moni-
tors, and is currently a project manager for anesthe-
sia information systems. Chris 1s the author of a tech-
nical article on IC design productivity and is a
member of the VDE. Born in Stuttgart, he lives in
Leonberq, is married, has a daughter, and enjoys
swimming, gardening, and traveling

10 Hardware Architecture

Werner E. Heim

R&D engineer Werner Heim
joined HP's Bablingen Med-
cal Division in 19886, soon
after earning his electronics
engineering diploma from
the University of Braunsch-
p weig in Germany. He devel-
\ ¢ 4 oped camputer module hard-
3 ware, including the
backplane, CPU, utility CPU, and EPROM, as well as
the utility CPU firmware for the HP Component Mani-
toring System. Born in Giessen-Hessen, Germany,
Werner lives in Herrenberg, Baden-Wiirttemberg, and
enjoys music and books

Christoph Westerteicher
Author's biography appears elsewhere in this section

13 Software Architecture

Martin Reiche

Project leader Martin Reiche
was responsible for the fun
damental design of the soft-
ware architecture, operating
system and development
environment, and patient
signal processing software
for the HP Companent Moni-
toring System. His team's
efforts resulted in automation of all external activities
and a smooth integration of each module into the
monitoring system. This produced enhanced product
reliability and efficiency. After joining HP's Bablingen
Medical Division in 1982, he developed ECG and re-
spiratory signal processing for the HP 78832 and
78833 neonatal patient monitors, Martin received his
electrical engineering diploma in 1981 from the Uni-
versity of Wuppertal. Born in Wuppertal near Co-
logne, Germany, he lives in Gaufelden, is married, and
has one child. He enjoys bicyeling, music, and natural
and life sciences, especially psychology.

19 Parameter Module Interface

Winfried Kaiser

Winfried Kaiser was the
project leader and designer
for the parameter module
interface, front-end firm-
ware, module rack, and
some of the parameter mod-
ules for the HP Component
Monitoring System. His ef-
forts resulted in a front-end
link that provides fast response, optimum use of
available bandwidth, configuration detection, and
synchronization for a wide variety of modules. After
earning his engineering diploma in 1982 from the
University of Karlsruhe, Winfried joined HP's Bablin-
gen Medical Division in 1982, He has developed hard-
ware and firmware and been a project leader for sev-

eral patient monitoring systems, and is naw a project
manager for patient manitoring products and en-
hancements. Born in Lahr in the Black Forest, Win-
fried lives in Bdblingen, is married, has one son, and
enjoys traveling, swimming, and family activities

21 Measuring the ECG Signal

Wolfgang Grosshach

Hardware R&D engineer
Wolfgang Grossbach de-
signed and developed the
ECG/respiration HP M1001A
and M1002A modules and
mixed analog-digital applica-
tion-specific integrated cir-
cuits {ASIC) for the HP Com
panent Monitaring System
The modules and circuits produced significant reduc
tions In cost, power consumption, size, and compo-
nent count. Woltgang joined HP's Béiblingen Medical
Division in 1985, shortly-after receiving his electronic
engineering diploma from the University of Stuttgant
Born in Salzburg, Austria, Wolfgang lives in Murr,
Germany. He is married, has two daughters, and en-
joys jogging, bicycling, photography, and reading.

25 Blood Pressure Module

Rainer Rometsch

Mechanical design engineer
Rainer Rometsch developed
the pump assembly for the
naninvasive blood pressure
module and plastic parts for
the display front assembly in
the HP Component Manitar-
ing System. The result of his
efforts s one of the smallest
self-contained noninvasive blood pressure modules in
the world—a unit that can be built in about two min-
utes Aainer joined the R&D unit at HP's Medical
Products Group Europe in 1986, and i1s now warking
on respiratory gas measurement. He is named as an
inventor in a patent on noninvasive blood pressure
measurement. He received an engineering diploma in
1986 from the Engineering School of Furtwangen
Born in Mahiheim/Donau (Baden-Wiirttemberg), Rain
er lives in Wildberg in the Black Forest. He is married,
has two children, and enjoys working on his house
and garden and restoring old BMW motorcycles

26 Stripchart Recorder

Leslie Bank

Project manager Les Bank
helped develop the two-
channel stripchart recorder
for the HP Component Moni-
toring System. The efforts of
hus team resulted in a break
through in reducing the size,
cost, and power consump
tion of monitoring recorders.
Les, a member of the IEEE, earned a BS degree in
electrical engineering in 1869 from the City College of

64 October 1991 Hewleti-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

e R R P R R R R R AR

New York and an MS degree in electrical engingening
in 1873 from Northeastem I_vae*ﬁm.- He joined HP's
Waitham Division in 1973 as a production engineer,
working on {:a‘.nem monitoring systems. Befor
ineer with Raytheon
{ n "'ar"‘ll":]hF"‘" '13::'

twi children

0ir-

29 Human Interface

Gerhard Tivig

Gerhard Tivig was the proj-
ect leader for development
of the human interface for
the HP Component Monitor-
ing System. He also devel-
aoped software for the alarm
manager and localization
tools that allow efficient

= npneration of local language
versions so the monitor can be used worldwide. Ger-
hard joined HP’s Bahlingen Medical Divisian in 1980,
where he researched and developed display software
and invasive pressure parameters for HP? monitoring
systems. He feceived an engineering diploma in 1875
from the Technical University in Bucharest, Romania,
and later worked for two years as a system program-
mer for bedside monitor software systems at Mennen
Medical Center in Israel. He is named an inventor ina
European patent for the Component Monitoring Sys-
tem’s human interface. Born in Bucharest, Gerhard
lives in Bdblingen, He is married, has two daughters,
and enjoys family activities and traveling

Wilhelm Meier

Wilhelm Meier was the de-
sign engineer responsible for
the HP Component Monitor-
ing System’s human inter-
face design, simulation, and
implementation. He de-
signed an intuitive, easy-to-
use consistent control sys-
tem for all applications and
all members of the HP Component Monitoring System
family. He joined HF's Btiblingen Medical Division in
1982 and developed human interface software for the
HP 78353, 78834, and 78352 medical monitors, gain-
ing experience in human factors and human interface
design. He is named an inventor in a European patent
for the Component Monitoring System human inter-
face. He is now responsible for improvements and
enhancements to the Component Monitoring System
human interface software. Wilhelm eamed an electn-
cal engineering diploma from the Technical University
of Hannover in 1981 Born in Obernkirchen in Lower
Saxony, he lives in Herrenberg, Baden-Wiirttiemberg,
is married, and has two children

37 Globalization

Gerhard Tivig
Author’s biography appears elsewhere in this section

40 Physiological Calculation

Steven J. Weisner

[3 b'o for “'E' sy 3
nal bDe‘"I"f'E' jans and con
tributed to software
development. His team’s
efforts resulted in a physiological calculation applica-
tion that reduces the large amount of raw vital-signs
data inta derived values the clinician uses to assess a
patient’s condition. He joined HP's Waltham Division
in 1982 and has worked as a project leader for the HP
central station and as a software engineer for the HP
arthythmia monitoring system, SDN interface, and
patient data management systems. His professional
speciaities include human interface design and clini-
cal information management. Steve is now a soft-
ware project leader for HP cardiac care systems, re-
sponsible for external spacifications and user
interface design. Before joining HP, he was a soft-
ware enginesr with Cornell University. He received a
BA degree in 1976 in biology from Cornell University,
and an MS degree in 1981 in biomedical engineering
from the University of Wiscansin. A member of the
[EEE, he is the authar of technical articles in the |EEE
Transactions on Biomedical Engineering and in the
Proceedings of the Human Factors Seciety. Bam in
Paterson, New Jersey, he lives in Lexington, Massa-
chusetts, has a daughter, and enjoys bicycling and
sailing

Paul Johnson

Paul Johnson, a software
development engineer
whose professional interests
include real-time pperating
systems, implemented the
hemodynamic, oxygenation,
and ventilation physiologic
calculation displays and for-
mulas for calculating the
displayed values for the HP Component Monitoring
System. These calculated values are good predictors
of major malfunctions or mortality in intensive care
patients. Paul joined HP's Waltham Division in 1978
after receiving a BSEE degree in 1968 from Purdue
University and an MSCP degree in 1986 from the Uni-
versity of Lowell in Massachusetts. He was a soft-
ware engineer for HP's computer-aided manufacturing
department, a production engineering manager, and a
development engineer in R&D. Before joining HF, he
was a development engineer with the Medical Divi-
sion of American Optical Co, and a hardware engi-
neer with Raytheon Corp. A six-year U.S. Navy veter-
an, Paul was born in Elkhart, Indiana, and lives in
Graton, Massachusetts. He is married, has two chil-
dren, and enjoys playing golf and histening to jazz

44 Mechanical impiementation

Karl Daumiiller
Karl Daumiilier was the me-
chamical design project leag-

e puter module

Manitorin 1‘] Sysii""

helped reduce the runmer of
parts dramatically over pee-
vious patient monitoring
designs. After jaining HP's Biblingen Caloulator Divi-
sion in 1979, he served for two years as a process
and production engineer for desktop computers and
peripheral products. Karl worked as a mechanical
design engineer for over eight years at HP's Boblin-
gen Medical Divisian, develaping the HP 7835x family
of patient monitors, HP 8040 and B041 cardiotoco-
graphs, and mounting hardware for hospital instalia-
tions. Now the virtual source engineering manager
for the Bablingen Manufacturing Operation, he is re-
spansible for eentralized sourcing of sheet metal and
cahinet parts for all German manufacturing divisions.
Karl received an engineering diploma from the Engi-
neering School of Esslingen in 1979, Bom in Stuttgart
in Baden-Wirttemberq, he lives in Filderstadt, is mar-
ried, has four children, and enjoys family and church
activities and gardening

Erwin Flachslander

Mechanical engineer Erwin
Flachslander was responsi-
ble for the mechanical de-
sign of parameter modules
for the HP Component Mani-
toring System, He helped
design an enclosure that can
be assembled and serviced
without any tool. Erwin
jnined the R&D division of HP's Bblingen Medical
Division in 1985, shortly after raceiving his mechani-
cal engineering diploma from the Engineering School
of Ulm. At HP. he has worked on a TC-p0,/C0O; cali-
brator system. He is named as an inventor in a patent
on a connector for the blood pressure monitor. Before
Joining HP, Erwin was a mechanic in manufacturing
and production at two different companies. Barn in
Kempten, Bavaria, he lives in Bablingen, is married,
has two children, and enjoys motorbiking, photogra-
phy, and playing a music synthesizer.

49 Automated Test Enviornment

Dieter Goring

Software quality engineering
manager Digter Goring de-
veloped the automated soft-
ware test environment for
the HP Component Manitor-
ing System. He designed the
AUTOTEST tool and devel-
oped a suite of structured
tests, which runs 60 hours of
automatic tests and 45 hours of semiautomatic tests
overnight and weekends. Dieter received his engi-
neering diploma from the Engineering Schoal of Furt-

o~

© Copr. 1949-1998 Hewlett-Packard Co.

October 1991 Hewlett-Packard Journal 65

wangen in 1967, After joining HP's Computer Systems
Oivision in Bablingen, Germany in 1973, he served as
an R&D engineer, project engineer for automated test
systems, communications and office automation man-
ager, and information technology manager. Before
joining HP. he was an application programmer and a
software project engineer, Barn in Dilsseldorf, he
lives in Bablingen, is married, has two children, and
BNjOys Sports, music, reading, and traveling.

52 Production and Final Test

Otto Schuster

Production engineer Otto
Schuster was responsible for
the production process de-
velopment and design for
manufacturing of the HP
Component Monitoring Sys-
tem. He helped ensure the
concurrent design of the
product and its production
processes—the first HP product designed in surface-
mount technology in'the Bablingen technology center
Otto joined HP's Boblingen Medical Division in 1979,
shortly after receiving an engineering diploma in elec-
trical engineering from the Enginearing School of
tsslingen. He served as a production engineer for the
HP 78352, 78353, and 78354 manitoring systems. A
resident of Heimsheim in Baden-Wirttemberg, where
he was born, Otto is marnied, has two sons, and en-
joys skiing, bicyeling, and gardening

Joachim Weller

Production engineer Joachim
Weller was responsible for
the design and development
of front-end production test
systems for the HP Compo-
nent Monitoring System and
for HP-UX tools for statistical
process control. He also
worked closely with R&D on
design testability, and helped reduce manufacturing
cycle time on the manitoring system. After joining
HF’s Bablingen Medical Division in 1984, he was re-
sponsible for the production of patient monitors and
the development of a new generation of final test
systems for the HP 78352, 78354, and 7B356 patient
monitoring systems. Joachim received an engingering
diploma in 1984 from the Engineering School in Ess-
lingen. Born in Stuttgart in Baden-Wirttemberg, he
lives in Herrenbera, is married, has two children, and
enjoys amateur radio, windsurfing, camping, and
studying foreign languages

55 Cost of Software Defects

William T. Ward

Jack Ward joined HP's Wal-
tham Divisian in 1982 and
has worked on the software
and firmware development
of critical care bedside moni-
tors, arrhythmid analysis
. systems, and medical data-
’ base systems. As the man-
ager of software guality en-

gineering, Jack is now respansible for testing each of
these products for use in medical environments. He
garned a BS degree in linguistics in 1972 fram the
University of [llinois and an MS degree in computer
science in 1984 from Baston University, Before joining
HP, he worked as a software support engineer for
Data General Carp. The author of several articles pub-
lished in technical journals, Jack teaches undergradu-
ate and graduate courses in C, C++, and software
guality a1 Boston University. Barn in Winana, Missis-
sippi, he lives in Brookline, Massachusetts, is mar-
ried, has three children, and enjoys music, gardening,
and jogging.

58 Code Inspections

Client/server computing and
software quality improve-
ment are the professional
interests of Frank Blakely, a
software enginger at HF's
Applications Support Divi-
sion. Frank joined HP's In-
formation Resources Opera-
tion in 1980. He helped
tlavelop a code inspection process togl for HP's Data
Management Systems Division that is now used early
in the software development cycle to help improve
the quality of software products and the productivity
of development engineers at his division. Before join-
ing HP, Frank was an MIS programmer at LooArt
Press, Inc. and a programmer/analyst with Informa-
tion Resources Ltd. He 15 a graduate of Colorado Col-
lege, earning a BA degree in mathematics in 1973,
and a graduate of the University of Oregan with an
MS degree in mathematics in 1977. Frank i5 named
as an inventar in a patent pending on HP cooperative
services. Born in Colorade Springs, Colorado, Frank
lives in Roseville, California, is married, and enjoys
cross-country skiing, hiking, playing hoard games, and
participating in the Piacer County Fair Association.

Mark E. Boles

A software quality engineer
in HP's Applications Support
Division, Mark Boles is re-
sponsible for metrics collec-
tian, process improvement,
and implementing processes
and new methodologies for
software development. He
helped developa code in-
spection pracess model for HP's Data Management
Systems Division that is now used early in the soft-
ware development cycle to help improve the quality
of software products and the productivity of develop-
ment engineers at his division. Mark jpined HP's Com-
puter Systems Division in 1982, shortly after earning
a BSEE degree from San Jose State University. He
became a hardware reliability engineer for environ-
mental and reliability testing for the HP 3000 comput-
er and process improvements, and later a software
quality enginger responsible for test and productivity
tonls. Client-server application integration is his pro-
fessional interest. Mark is 8 member of the American
Society of Quality Control. Born in Nationa! City,
California, he lives in Roseville, is married, and enjoys
car restoration, snow and water skiing, and building
electne trains with his three-year-old son

66 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

69 HP Vectra 486 PC

Larry Shintaku

Project manager Larry Shin-
taku and his team developed
the HP Vectra 486 PC acces-
sories. Their new develop-
ment processes helped HP
market the first personal
computer to use the Intel486
micraprocessor with an EISA
bus. Larry joined HP's Data
Terminals Division in February, 1980, two months af-
ter receiving a BS degree in electrical engineering
from Fresno State College in Califarnia. As hard-
ware designer, he developed the HP 2623A/2 termi-
nal graphics subsystem, and later, as a project man-
ager, he helped develop the expanded memory card
for the HP 150 TouchScreen PC. Larty is now manag-
ing the development of the next generation of HP
Vectra 486 PC products. Before joining HP, he worked
in digital communications with Dantel Inc. A member
of the [EEE, Larry was born in Fresno and lives in
Unian City. He enjoys racquetball, low-budget mation
pictures, and softball

73 EISA Connector

Michael B. Raynham

Exploring the creative links
between art and technology
are among the professional
interests of Mike Raynham,
an R&D development engi-
neer at HP's California Per-

Y. / sanal Computer Division
- Mike helped design the HP

Vectra 486 PC and its Ex-

tended Industry Standard Architecture (EISA) connec-
tor. He helped achieve an extremely fast development
cycle of six months from initial concept to production
of the first EISA connectors, which allow EISA-amd
ISA 1/0 cards to be handled in the same connector
Mike also worked on hardware development for the
HP 21168, 21004, and 3000 computers, the HP
26444, 2645A, 264BA, 26474, and 2703A terminals,
and the HP 150 TouchScreen |l, HP Vectra RS16/20,
and HP Vectra 486 personal computers. Before joining
HP in 1983 in Bedford, England, he worked as a film
recording engineer with the British Broadcasting Cor-
poration and as an apprentice with British Aerospace.
He is named as an inventor in patents or patents
pending for a display panel, digital encoding/decod-
ing techniques, DRAM on-chip error correction, low-
cost connectors, and IC surface-mount process defect
detection designs. Mike is a member of the [EEE and
acted as chair of the Desktop Futurebus+ subcommit-
teg. He earned an HN.C. degree in 1962 from Luton
College of Technology and an MS degree in 1971
from Santa Clara University, bath in electrical engi-
neenng. Born in Winnersh, England, he lives in the
Santa Cruz mountains in Califarnia, is married, and
has two sons. He enjoys clay sculpture, ceramic tile
painting, and watercolor painting

Douglas M. Thom

b

As:an engineer and project
manager, Doug Thom per-

ve an extremely fast

development cycte of six months from initial concept
to production of the first EISA connectors, which al-
low EISA and ISA 1/0 cards te be handled in the same
connector. He joined HP's Optoelectronics Division in
1980, and is now listed as an inventor on a patent on
fiber pptic component design and an inventor an a
patent pending on the EISA connector. Before joining
HP. he was a consumer product designer with Nation-
al Semiconductor Corp. and Fairchild Semiconductor.
He earned BS degrees in 1975 in electrical and me-
chanical engineering from the University of California
at Davis. Born in San Mateo, California, Doug lives in
Woodside, California, is married, and has a son. He
enjoys sailing, carpentry, architecture, cooking, and
gardening

78 HP Vectra Memory Controller

Marilyn J. Lang

Marilyn Lang joined HP's
California Personal Comput-
er Division in 1981 and
worked on |C test vector
generation and simulation
for the HP 150 video control-
ler ASIC. She also designed
the HP-HIL port extender
used in the HP Vectra RS/1B,
RS/20 and ES/12 PCs Marllyn then worked an
memary subsystem analysis and design for the HP
Vectra 386 PC, which led ta her work on the memory
controller ASIC design for the HP Vectra 486 PC. Her
efforts helped produce a high-performarnce, burst-
made capability that enhanced the competitive price/
performance of the HP Vectra 486 PC. Marilyn earned
a BS degree in 1975 in chemistry from the Southem
[llinois University at Carbondale, an MS degree in
biochemistry in 1978 from the University of lllinois at
Urhana, where she also studied computar science,
and an MSCSE degree in 1988 in computer science
and engineering from Santa Clara University. Born in
Chicago, Illinois, Marilyn lives in Milpitas, California,
is married, has a daughter, and enjoys gardening,
science fiction/fantasy, and classical music. She isa
member of the National Gardeninig Association and
various humane and wildlife societies

Gary W. Lum

Project manager Gary Lum,
whose professional special-
ties include memory technol-
ogy and design, was respon-
sible for developing the HP
Vectra 486 memory control-
ler and memory subsystem
architecture. His efforts re-
sulted in a mgh-performance
hurst-mode memory capability that helped enhance
the competitive price/performance advantage of HP's

5-MH:z system. Gary joined HP's Data Terminais Divi-
jon in 1979 and worked as 3 project manager for HP
Vectra PC accessory cards, on the HP Vectra PC and
HP Vectra ES PC, and on IC desi gn for 1’18 HP 150

T reen || PC. A member
Syracuse, New York

WP

83 HP Vectra BIOS

Thomas Tom

R&D software engineer
Thomas Tom joined HP's
California Personal Comput-
er Division in 1989 and de-
veloped the firmware for
security features and the
Micro-DIN mouse support for
the HF Vectra 486 Basic 1/0
system (BIOS). He is now
uesiyinng sortware 1o support features of HP'S new-
st PCs. Thomas is a 1983 graduate of the California
Polytechnic State University at San Luis Obispo with
a degree in electrical engineering. Before joining HF,
he developed real-time satellite simulation software
for Stanford Telecommunications, Inc., and developed
lest software to evaluate integrated circuits at NEC
Corp. Thomas lives in San Francisco, where he was
barn, and anjoys basketball, tennis, bowling, and bik-
ing

lnrm R. Jones, Jr,

WHY Computer and system archi-
2 i tecture and artificial intelli-
gence are the professional
interests of lvin Jones, a
software engineer who
helped develop the HP Vee-
tra 486/25T system BIOS
His efforts helped ensure
that the HP Vectra 486 PC
makes the most efficient use of its IneldBb micropro-
cessor, the EISA bus, and new memory subsystem
Sinte joining HP's California Personal Computer Divi-
sjon in 1988, Irvin alsn helped design the system
BIOS and system utilities disk for the HP Vectra
1S/12, the HP Vectra 486/33T PC, and the HP Vectra
386 PC. Betore joining HP Irvin worked as a digital
designer on photocopier function cards for IBM, on
the microcontroller design of professional video Sys-
tems for Sony Corporation, and an a parallel comput-
er peripheral interface for Bell Communications Re-
search A member of the [EEE and the Triathlon
Federation, Irvin |5 named as an inventor of two pat-
ents pending for HP's PC BIOS. He eamed a BS de-
gree in electrical engineering from Stanford Universi-
ty in 1982, an MS degree in computer engineenng in
1986 and an MS degree in computer soience in 1988
from the University of California at Santa Barbara
Barn in Dayton, Ohio, he lives in San Jose, Calitornia,
and enjoys triathlon competition, playing jazz on the
vilaphone and drums, and collecting comic books

Christophe Grosthor
Reai-time low-iavel software
design and application de-

Sio

Vectra 486 PC BIOS and the |
810S. He helped ensure that the HP Vectra 486 ’“
makes the best use of its Intel486 micraprocessor, the
EISA bus, and 2 new memory subsystem. He received
an MS degree in lsctronics from the University of
Toulouse, France, in 1986 and a software engineenng
degree from Ecole Nationale Superieure des Telecom-
munuications de Bretagne in 1988, Before joining HP,
Christophe worked on object-oriented compiler de-
sign as a software engineer for Interactive Software
Engineering. Inc. in Santa Barbara, California. Borp in
Strashourg, France, he lives in Grenoble, is married,

and enjoys sports, mountain hiking, and traveling.

Viswanathan S. Narayanan

Software development engi-
neer Suri Narayanan devel-
oped the EISA initiglization
procedures for the HP Vectra
486 PC BIOS. His efforts
helped ensure that the HP
Viactra 486 PC makes the
best use of its Intel486 mi-
croprocessor, the EISA bus,
and a new memory subsystem. After joining HP's
California Personal Computer Group in 1988, he de-
veloped BIOS designs for the HP Vectra 386/25 PC,
and is now working on future HP personal computer
praducts. Suri received a BS degree in 1980 from the
Regional Engineering College in Warangal, India, and
an MS degree in electrical engineering in 1985 from
the University of Wyoming. Barn in Secunderabat,
Inchia, he lives in Fremont, Califarnia, Is married, and
enjoys gardening and playing basketball

Philip Garcia

Phil Garcia was responsible

! for the EISA CMOS BIOS
interface and the cache cop-
trol BIOS code. He has
worked on keyboard micro-
cantroller firmware design
and PC utilities design for HP
Vectra PCs. After joining HP's
Data Terminals Division in
1982 as a development engineer, he worked on ana-
log design for the HP 2700 color graphics workstation
and the HP 150 Touchsereen PC, and on EMI/RF com-
pliance design for the HP 150 and HP Vectra PC. A
Stanford University graduate, he received a BAS de-
aree in economics and electrical engineering in 1978,
and an MSEE degree in analog IC design in 1981, Phil
is named as an inventor in two pending patents on PC
BIOS designs. Born in New York City, he lives in Sara-
toga, California, is married, and enjoys hiking, skiing,
old movies, and museums

© Copr. 1949-1998 Hewlett-Packard Co.

Octaber 1991 Hewlett-Packard Journal 67

92 Vectra Performance Analysis

John D. Graf

Development engineer John
Graf joined HP's California
Persanal Computer Division
in 1989, right after earning a
BS degree in electrical engi-
neering from Rice University
He then designed hardware
tools to measure the perfor-
mance of existing PCs, and
dev&lup&d mathematical and software models to
evaluate and predict the performance of future archi-
tectures. These performance tools were used to de-
sign and enhance the performance of the HF Vectra
486 PC and the HP Vectra 486/33T PC. John's profes-
sional interests are focused on evaluating the perfor-
mance characteristics of CPU, cache, memory, and
video. Born in Baton Rouge, Louisiana, he lives in
Sunnyvale, California, is married, and enjoys Cajun
cooking, bodysurfing, and volunteer work in a church
youth group.

68 October 1991 Hewlett-Packard Journal

As a hardware development
engineer at HP's California
Personal Computer Division,
Dave Blevins developed the
L hardware for the backplane
p "1 |/0 monitor, a noninvasive

1 | tool that helps analyze a
-:\ ’ ' '\ personal computer’s subsys-
L s tem workload and provides
data for predictive system modeling. Dave, who
joined HP's Southern Sales Region in 1982 as a cus-
tomer engineer in the New Orleans sales office, was
a member of the HP Vectra RS/20 development team,
a CAE tools support engineer, and a hardware devel-
opment engineer. He left HP in 1990 to jain MINC,
Inc. in Colorado Springs, Colorado, as an applications
engineer. Dave received a BSEE degree in 1982 from
Washington State University, Born in Middletown,
Ohio, he lives in Colarado Springs, Colorado, and is

married. Dave enjoys music synthesizers and comput-

er music sequencing, high-performance motoreycles,
mountain biking, and playing guitar in a local jazz-fu-
sion group

© Copr. 1949-1998 Hewlett-Packard Co.

Chris Bartholomew joined
HP's California Personal
Computer Division in 1989
soon after earning BS de-
grees in computer science
and in electrical engineering
from Texas A&M University.
As an HF system perfor-
mance engineer, Chris devel-
oped the disk, IKD and BIOS performance maodeling
hardware and software togls that help to noninva-
sively analyze a personal computer’s workload in
these subsystems. These tools were first used to de-
sign and enhance the perfarmance of the HP Vectra
486/25T PC and the HP Vectra 486/331 PC. Chris’
professional interests include embedded program-
ming, object-oriented programming, performance
modeling, and multiprocessor architectures. He is a
member of the IEEE and the IEEE Computer Society
Before joining HP. he was a systems programmer at
Compag Computer Corp. Bomn in Jackson, Michigan,
Chris lives in Fremont, California, is married, and en-
joys camping, radio-controlled airplanes, fishing, and
racquethall

The HP Vectra 486 Personal Computer

The HP Vectra 486 series of computers uses the Intel486™ microprocessor,
a custom-designed burst-mode memory controller, and the HP
implementation of the Extended Industry Standard Architecture (EISA).

by Larry Shintaku

The HP Vectra 486 PC was the first of HP's new genera-
tion of personal computers using the Intel486 micropro-
cessor and the EISA (Extended Industry Standard Archi-
tecture) bus architecture. The Intel486 is a high-perfor-
mance microprocessor that integrates the CPU, 8K bytes
of cache, and a math coprocessor onto one chip running
at a clock speed of 25 or 33 MHz.* The CPU instruction
set is optimized to execute instructions and move data in
fewer clock cycles than its predecessor, the Intel386 mi-
croprocessor. The EISA bus was defined by an industry
consortium of which HP is an active member. The EISA
bus definition objectives were to migrate the existing
16-bit Industry Standard Architecture (ISA) bus into a
32-bit bus, improve the DMA performance, and provide
support for multiple bus masters while maintaining back-
wards compatibility with all existing ISA backplane /O
cards.

The HP Vectra 486 development objective was to deliver
these two new technologies to market quickly. We were
presented with several technical and product development

*Hecent releases of the HP Vectra 486 series include the Vectra 486/257 and Vectra/331,
the 33-MHz version of the Intel486 microprocessor

the latter uses

challenges in trying to meet this objective. These chal-
lenges included:

Defining a physical bus connector that would accommao-
date both EISA and ISA cards (see article on page 73)
Incorporating all the new technical design features that
EISA offers

Developing performance enhancements targeted for the
memory and mass storage subsystems.

System Overview

The Vectra 486 uses the existing upright floor package
that is used by the HP Vectra RS series (see Fig 1). Its
mass storage, power, and feature options matched our
customer requirements for high-end server and CAD appli-
cations. The form factors for the printed circuit boards,
already defined by the Vectra RS PC package, fixed the
amount of logic each board could support, the logic de-
sign and printed cireuit board partitioning, and the funec-
tional, EMC, and performance objectives. The functional
objectives were met by partitioning the system compo-
nents so that follow-on EISA products could easily lever-
age core components developed by the HP Vectra 486

Fig. 1. The HP Vectra 486 per-
sonal computer.

69

October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

team. The EMC objectives were met by minimizing,
through design, source radiation and harmonics caused by
mismatched impedances. The design required that clock
speeds up to 66 MHz be distributed over several printed
circuit boards and connectors. Meeting the EMC objec-
tives was very important since they represented a poten-

tial delay in the schedule if regulatory requirements were
not met. The performance objectives were met through
the development of an Intel486 burst-mode memory con-
troller and a high-performance hard disk subsystem. The
burst-mode memory controller is described on page 78
and the disk subsystem is discussed on this page.

The HP Vectra 486 EISA SCSI Subsystem

HF's advanced PC mass storage products have consistently provided customers
with performance and conformance to industry standards. The HP Vectra 486 PCs
continue this tradition by providing a high-performance storage subsystem that is
compatible with EISA and SCSI-2 (Small Computer System Interface) industry
standards.

The investigation of customer needs for the first EISA PC, the Vectra 486, revealed
that the highest-performance PCs were entering new application areas. Customer
and application requirements resembled more those of the warkstation or mini-
computer user than those of an individual running a word processing application
Demanding compatibility with the IBM PC AT, customers also insisted upan high
capacity, performance, and reliability for such applications as PC CAD, multiuser
UNIX* operating systems, and multiclient file servers.

HP's California PC Division's (CPCD) advanced storage team responded by develop-
ing, along with its invaluable partners at HP's Disk Memory Division {DMD) and
Adaptec, a new ESDI {Enhanced Small Device Interface) disk family and Industry
Standard Architecture (ISA) disk controller. Each of the new 20-Mbyte/s disk drives
fram DMD provides up to 670 Mbytes of 16-ms average accass time storage at an
MTBF (mean time between failures) of 150,000 hours. Adaptec’s controller not only
supports the drive’s data rate, but also provides a 64K-byte read-ahead cache. By
continuing to read data past the user's request, the controller's cache already has
additional data the user is likely 1o want later. At its introduction, the Vectra 486's
storage subsystem provided excellent performance, capacity, and reliability while
staying PC-AT software compatible.

The engineers at CPCD realized that although powerful for its time, the ISA disk
subsystem's performance had approached its architectural limits. Further perform-
ance improvements could only come with fundamental design changes, Unlike I1SA
disk subsystams, a new architecture would take full advantage of the EISA 1/0 bus
and other new technologies

The first products based an this new architecture appeared with the introduction
of the Vectra 486/33T. Targeting once again the multiuser UNIX operating system
environment and Novell Netware file server customers, the advanced storage
team brought to market the PC industry's first EISA SCSI-2 storage subsystem
Contributors from all disciplines in the PC industry supplied state-of-the-art compo-
nents. Hardware suppliers developed the EISA SCSI host adapter and the
440-Mbyte to 1000-Mbyte SCSI-Z disk drive family while software suppliars
created the industry’s first tagged queuing SCSI-2 disk drivers for the Santa Cruz
Operation UNIX operating system and the Novell Netware network operating
system.

Tagaed command queuing is a feature of SCSI-2 that allows a peripheral to intelli-
gently execute I/0) requests from the host computer. The peripheral can, but does
not have to, reorder the sequence of the I/0 command stream to optimize its ex-
ecution, By use of the queue tag, the peripheral can associate the 1/0 request with
the data, thereby not requiring that the data be assaciated with a single pending

"UNIX 1sa US. registered trademark of UNIX System Labaoratories in the U.S.A. and other
countries

101 + Tag! 104 + Tag4
102 + Tag? 103 + Tagd
Seg‘::"fr 103 + Tag3 105 + Tags gf;z;"
104 + Tagd 101 + Tag!
105 + Tag5 102 + Tag2

Peripheral
Device

10 = 10 Reques!
Tag = Queue Tag

Fig. 1. Tagged queuing

1/0 request. Fig. 1 illustrates this concept. Five /0 requests are generated all at
once in the sequence shown. The peripheral device decides to reorder the re-
quests for optimal execution and gives the completed requests back 1o the host
adapter in the optimal order. The host adapter associates the returned data with
the correct tag, and reassembles the /0 thread onginated by the system,

From the 32-hit bus master host adapter, which supports up to 16-Mbyte/s single-
ended fast SCSI, to the 12-ms access time caching disk drive. the hardware com-
ponents represent some of the best of today’s technology applied to the PC envi-
ranment, However, choosing the highest-performance components is only part of
the development story. Tuning each subsystem component for UNIX and Netware
application perfarmance made the Vectra 486/33T more than the sum of its parts.
The team optimized each of SCSI-2's performance parameters and features while
staying within the industry standard. Additional HP proprietary performance tuning
of the drive’s 128K-byte cache further enhances system performance

Today's PC SC3I subsystem offering is just the beginning. The architecture can
support a wide variety of SCSI peripherals available industry-wide. For the first
time PC customers can have access to such diverse peripherals as CD-ROM, 1ape,
DAT, and remavable magnetooptical storage. In addition, this EISA SCSI architec-
ture allows for system performance growth as the industry continues to develop
SCSI1-2 to its full potential. The SCSI-2 storage subsystem architecture will mest
the challenge of future customer needs for both added performance and greater
peripheral connectivity.

Differentiating products that are based upon widely available industry standards is
difficult. After all, an Inteld86 microprocessor runs just as fast for another PC
vendar as it does for HP. HP's strength lies nat anly in its SPU architecture but also
in ts ability 1o fulfill particular customer needs, Every Vectra 486 and 486/33T
storage subsystem has bean optimized to provide customers with the best per-
formance and reliability in an EISA PC.

Mike Jerbic
Development Engineer
California PC Division

70 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

System Memory
(ZM Bytes to 54M Bytes)

Intet4B6 CPU

HP Custom
Burst-Mode

‘ Coprocessor |

Memary
Controller

1
|

32-Bit System Bus

EiSA Bus

Controlles Local 1'0}
Bus
32.8it EISA Bus |
Eight EISA 10
Connectors
[a)
Processor Card
Eight SIMM Sockets

Ineld86 Eight EISA Slots

Microprocessor

Memory
Cantroller
Memory Card :
Host CPU and g\
Memaory Bus . =™
'-.'_)__\:1?‘
CMOS RAM

®) Real-Time Clock
The physical partitioning of logic (see Fig. 2a) divides the
system into five printed circuit board assemblies (see Fig.
2b). The core assemblies consist of a motherboard con-
taining the core EISA control logic and local VO logic,
and two vertical printed circuit assemblies containing the
physical /O connectors for the keyboard, mouse, and
three /0 ports: two serial and one parallel. These core
assemblies can be leveraged for future EISA products.
The remaining two assemblies are the CPU and memory
printed circuit board assemblies. The CPU board contains
the Intel486 and related control logic, and the memory
board contains the HP burst-mode controller and SIMM
(single in-line memory module) sockets for RAM memory
upgrade.

© Copr. 1949-1998 Hewlett-Packard Co.

e

Real-Time Clock

Flezible Disk

Controller

| Embedded Hard
Disk Controlier
Parailel/Serlal
Controller
Mouse'Keyboard
Controller

Serial Parallel Cards

Keyboard Mouse
Serial Card

\t\>— 1'0 Card Slots

Flexible Disk Port

Hard Disk Port
EISA Bus Controller

OMA Contraoller

Fig. 2. (a) Logical partitioning of
the Vectra 486 system. (b) Physi-
al partitioning of the Vectra 486
system

Product Development Overview

The time-to-market objectives for the HP Vectra 486 prod-
uct required a new approach to the normal development
process used for past products. Managing three parallel
technology developments, the Inteld86, the EISA bus con-
troller chips, and the memory controller, and keeping the
project on an aggressive schedule was the main challenge
for the HP Vectra 486 team. To add to the challenge, two
of the three critical technologies in development were
outside HP (i.e., the Inteld86 and the EISA bus control-
ler). The first step was to outline the overall development
approach that would meet the time-to-market objectives
with a product that met our quality standards. The devel-
opment process also had to be flexible enough to track

71

October 1991 Hewlett-Packard Jourmal

the parallel development of the Intel486 processor and
the EISA chipset. The resulting development approach
consisted of two main phases of execution (see Fig. 3).
Our traditional product development cycle required three
to four phases.

We felt we could combine the breadboard and the labora-
tory prototype phases and still meet all the requirements
for determining feasibility, design for manufacturing, de-
sign for EMC, quality, and functional verification in the
first phase. This approach took less time and cut out
redundant or ineffective processes. After making the nec-
essary changes to the design in the first phase of the
project, the second phase focused on gefting the man-
ufacturing process ready for volume production and ex-
ecuting product qualification testing for HP environmen-
tal, regulatory, and quality requirements,

Many processes were performed in parallel to reduce the
amount of development time which, in many cases, in-
creased the risk of having to address dependency prob-
lems caused by something failing. Other important pro-
cesses were put in place to address these potential
development roadblocks. An example was the establish-
ment of direct interactive technical communication links
with outside companies for technical reviews and
changes. This liaison saved days or weeks of development
time for the HP Vectra 486 team. The team also made
sure that contingency plans were made for the critical
processes such as printed circuit board layout, fabrica-
tion, prototyping, and the tools of development to ensure
that progress would be maintained in most circumstances.

The HP Vectra 486/33T

During the latter stages of the HP Vectra 486/25T development program, develop-
ment of the Vectra 486/33T was initiated. This system, designed around the new
Intel486 33-MHz microprocessor, provides higher performance at a lower cost in
LAN server, multiuser, and PC CAD applications. By combining this processor tech-
nology with enhanced memory and mass storage subsystems and by building on
the achievements of the Vectra 486/25T, the Vectra 486/33T program was driven
by three major objectives: fast time to market, high performance, and high quality,
To meet the challenges of these three objectives, the development team implem-
ented twa key strategies; the first was focused system design understanding, and
the second was ongoing process Improvements.

System Development

A strategy of the HP Vectra 486 implementation was to partition the system com-
ponents to provide easy leverage for follow-on EISA products such as a 33-MHz
system. The areas of engineering and product reuse were the package and power
system, three core printed circuit assemblies, and the video adapter card. Through
performance analysis of the Vectra 486/25T system, we were able to focus on the
areas that would significantly contribute to our objectives. These areas included
design for 33 MHz, the addition of a high-performance second-level cache, inclu-
sion of bath write and memory buffers, and integration of a new high-parformance
SCSI (Small Computer System Interface) hard disk subsystem

To achieve the required performance levels for the 33-MHz system, it was deter-
mined that a second level cache (in addition to the on-chip Intel486 8K-byte cache)
was necessary. Simulations also showed that significant performance gains could
be achieved through the addition of a bus write buffer and a memary write buffer.
Therefore, the CPU design includes a 128K-byte, 2-way set associative, write-
through cache, with one level of bus write buffers. In addition, support for an
optional Wietek 4167 floating-point coprocessor was added to further meet the
needs of our customers reguiring increased floating-point performance for their PC
CAD applications.

Further performance simulation and analysis showed that the capabilities of HP's
custom burst-mode memory controller, first implemented on the Vectra 486/25T,
would continue to offer superior performance, with minor changes for optimizing
33-MHz operation and with the addition of a memary write buffer, Therefore, the
design of the memory controller was leveraged for use in this higher-performance
system, In fact, the result of the redesign of the memory PCA is @ memory board
that can support buth the Vectra 486/25T and 486/33T, with optimal performance
enhancements for both.

During the Vectra 486/33T design, the team was continuously looking for ways to
improve the quality and manufacturability of the system. A significant contribution
to this goal was made on the CPU board by eliminating all discrete delay lines.
This was achieved through the use of delay lines implemented by traces on the
printed circuit board. Using simulation and an understanding of the physical prop-
erties of the printed circuit board, the team was able to deliver delays with excel-
lent characteristics and margins. This resulted in higher reliability, lower costs, and
improved manufacturability.

Process Development

To achieve the fast time to market, the team needed to apply the |lessons learned
from the efforts of the Vectra 486/25T program. In addition to using the improve-
ments made for that program, several other enhancements were required. To
ensure team focus, the team constantly reviewed their decisions against the well-
communicated list of *musts” and “wants”. Increased levels of simulation were
used along with frequent design reviews. New and improved processes were
instituted for supporting the prototype systems used in test and verification and for
tracking and solving defects found during these phases. The result of all of these
efforts was a very efficient system verification cycle leading to a timely manufac-
turing release of a high-guality product

Mark Linsley
Section Manager
Calitarnia PC Division

72 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Production Manufacturing

Prototype Releass
Production
CPU Design N Build and Test Ramp =
Debug
HP Vectra 486 A
Deveiopment | Quality Assurance
Regulatory and

Compatibility Tests

L =

Roli Printed Circunt
Board for Production

Phases Laboratory Validation and Manutacturing
Prototype Phase Production Phase Ramp Phase

Production Prototype Fig. 3. The Vectra 486 develop-
Phase ment phases.

Conclusion success: Mike Perkins, Mark Hanlon, Anil Desai, Gary
The Veetra 486 development team was confronted with Lum, John Wiese, Irvin Jones, Phil Garcia, Jon Won Yuk,
the challenge of bringing an Intel486-based product to Suri Narayanan, Thomas Tom, Becky Smith, Dave Wilkins,
market almost simultaneously with the announcement of Rod Young, Van Dam, Martin Goldstein, Sam Lee, Kirin
the Intel486 microprocessor. By using new development Mundkur, Kamal Avlani, Kamran Casim, Gary Lin, Otaker
processes, the HP Vectra 486 was the first computer on Blazek, Wes Stelter, Marilyn Lang, Chris Anderson, Chris-
the market using the Inteld86 CPU and the EISA bus. tine Doan, Kevin Owen, Sam Chau, Robert Rust, Shrid-

har Begur, Christophe Grosthor, Bob Johnson, and Jun
Acknowledgments Kato.

The author would like to thank the following people who
helped to make the development of the HP Vectra 486 a

The EISA Connector

Providing backward compatibility in the EISA connector hardware for ISA
I/0 boards resulted in a bilevel connector design that provides pins for
both bus standards in the same connector.

by Michael B. Raynham and Douglas M. Thom

One of the reasons for the rapid growth of the personal * Support for a 32-bit address path and for 16-bit or 32-bit

computer (PC) market is the wide variety of compatible data transfers for CPU, DMA, and bus master devices. (A
software and hardware peripherals available for these bus master is a device that drives the address lines and
machines. This compatibility has been provided by a de- controls the signals for a bus cycle.)

facto industry-standard bus specification called Industry ~ * An efficient synchronous data transfer protocol that pro-
Standard Architecture (ISA). Although started with the vides for normal single transfers and the cycle control
original IBM PC system architecture, the standard has required to execute burst cycles up to 33 Mbytes/s.
evolved to where it can be adopted by any PC manufac- * Automatic translation of bus cycles between EISA and
turer, thus providing a stable platform for software and ISA masters and slaves.

hardware development, * Support for a bus master architecture designed for intelli-

gent peripherals. With EISA-based computers the bus
controller can operate some of the lines on behalf of the
bus master.

* A centralized bus arbitration scheme that supports pre-
emption of an active bus master or DMA device. The

The EISA (Extended Industry Standard Architecture) is a
superset of the ISA 8-bit and 16-bit architecture. The im-
portant features of the EISA specification include:

* Full compatibility with the ISA standard. ISA 8-bit and
16-bit expansion boards can be installed in EISA slots.

October 1991 Hewlett-Packard Journal 73
© Copr. 1949-1998 Hewlett-Packard Co.

EISA arbitration method grants access to the bus for
DMA devices, DRAM refresh, bus masters, and bus and
CPU functions on a fair, rotational basis.

« Level-triggered, shareable interrupts. Edge-triggered op-
eration ensures compatibility with interrupt-driven ISA
devices. Level-triggered operation facilitates sharing of a
single system interrupt by a number of devices.

« Automatic configuration of system and expansion boards.
EISA expansion board manufacturers provide configura-
tion files and product identification information so that
during system initialization these boards can be automati-
cally configured into a system (see page 84).

More detailed information about the EISA bus can be
found in references 1, 2 and 3.

Engineers from HP's personal computer group were in-
volved in defining the physical and electrical design of
the /O bus, the board connectors, and the logic control-
ling bus timing for the EISA bus specification. Their most
obvious contribution was the “double-decker” EISA con-
nector. This connector has two levels of pins. The first
level maintains ISA compatibility and the second level
adds the pins for the EISA bus specification. This article
will describe the EISA connector and some aspects of the
development partnership that led to the development of
the connector and I/O card hardware.

Background

The EISA connector was an important part of the imple-
mentation of the EISA bus standard. At the time we
started this project there was no connector available that
met the general electrical and mechanical characteristics
required for EISA. Some solutions were proposed but
they were discarded because they were not competitive in
size and electrical performance. The IBM Microchannel®
bus architecture had already doubled the pitch of con-
tacts from 0.100-inch to 0.050-inch centers on their con-
nectors, and it was felt that the EISA solution must use
this contact density to be competitive.

The technical responsibilities for the proposed EISA bus
design were divided among a small group of the original
EISA consortium companies. The responsibilities for the
definition, development, and sourcing for the EISA con-

nector were given to Hewlett-Packard and Compaq Com-
puter Corp.

Because the EISA connector was the first physical evi-
dence of the EISA hardware, it became important from a
public relations standpoint that the design not only be
backward compatible with ISA, but also be perceived as
technically superior (e.g., higher-performance, well de-
signed, etc.).

The availability of production connectors was a serious
concern because once the design was finalized the poten-
tial demand for connector hardware would be very high.
To ensure that a high-volume supply would be available,
and to manage the technical risks, it was decided to re-
cruit at least two major connector manufacturers to de-
velop and produce the connector. HP and Compaq Com-
puter Corp. recruited Burndy Corporation and AMP

*Microchannel is the bus architecture developed for the 1BM Personal System/2 computers

74 October 1991 Hewlett-Packard Journal

Incorporated into the EISA consortium to participate in
the design.

Organizational Challenges

The connector project was managed primarily by a joint
team of HP and Compaq engineers representing the EISA
consortium. The team attracted connector manufacturers
using the number of customers within the consortium to
convince the manufacturers of the magnitude of the busi-
ness opportunity for EISA connectors. The preliminary
design requirements were established by HP and Compagq
Computer Corp. as part of the EISA technical specifica-
tion. This technical specification, which was revised and
published periodically by the consortium, was the single
specification that all connector vendors used to develop
their specific connector designs. The periodic revision of
the specification proved very valuable in maximizing the
collective technical contributions of the connector ven-
dors. All potential vendors could obtain a set of technical
requirements by joining the EISA consortium. These ven-
dors could also recommend technical ideas for the design,
which, if adopted, would become part of the specification.
All technical contributions incorporated into the specifica-
tion became the intellectual property of the consortium,
and therefore, became available to all members. This pro-
cess produced a very robust and thorough connector
specification by using the collective efforts of all partici-
pants, some of whom were direct competitors. Fig. 1
shows the design and development information flow dur-
ing this process.

The connector’s technical specification was a perform-
ance-based specification. Except for the basic mechanical
dimensions, all parameters were specified based on elec-
trical, environmental, mechanical, or process performance.
This performance-based approach allowed each vendor to
provide subtle but significant design features in their final

Periodic
Revisions to the
EISA Specification

Consortium |

| Technical Requirements
| from EiSA Specifications

Design inputs and
Technical Feedback

Fig. 1. Information flow during the design and development of
the EISA connector. All connector manufacturers received the
EISA bus specification and provided feedback to the EISA
connector architects without interfacing to other manufactur-
ers, This provided the best possible technical design without
compromising vendor confidentiality.

© Copr. 1949-1998 Hewlett-Packard Co.

EISA Configuration Software

One of the specifications of the EISA standard defines the process for configuring
EISA slots into a computer system. When the EISA consortium was being formed,
Compaq Computer Comp. started the initial development of the software for config-
uring EiSA slots. Soon after development began, two HP engineers were assigned
to work with Compag in tha developmen

U

The configuration software detects the presence of accessory cards inserted into
the EISA siots of the computer and provides a process to configure the cards into
the system. The configuration process begins with the-configuration program
reatling a configuration file for each of the accessary cards installed in the EISA
slots. The configuration file contains information about the card that enables the
program to determing the optimum settings for any switches or jumpers on the
card. Once the program has determined the required configuration of the accessory
cards, it identifies any manual switch settings or changes that may be necessary,
and instructs the user to make them. The system configuration information is then
written to nonvolatile memary where it is stored and available to the BIOS (Basic
1/0 System) each time the computer boots up.

HP contributed heavily to the usability features of the configuration software by
using a fully equipped camera studia in our usability department to abserve peaple
using the canfiguration utility.

Some of the testing showed that nanprocedural interfaces, such as a windows
anvironment, didn’t work in the installation process as well as a procedural inter-
face. (A procedural interface presents a series of steps—procedures—that guide
the user. A nonprocedural interface simultaneously presents a number of tasks
from which the user must select the next step.) The initial version of the configura-
tion utility used a windows-like interface. The later versions of the configuration
utility were changed to use a pracedural Interface. In addition, help sereens have
bean improved, and some of the processes have been combined Into a single task
We also improved the code to make it run faster, eliminating a perception by some
users that the system was hung up.

Thee usability testing continues, and the latest version of the configuration soft-
ware has a much improved user interface. This new interface is fully procedural,
and tests have shown that ever the most inexperienced users can effectively
canfigure an HP Vectra computer.

More about the configuration files and the EISA slot initialization process can be
found in the article on page 83.
Tony Dowden
Learning Products Engineer
California PC Division

connector design. This preserved a healthy competitive
environment among the connector vendors and allowed
them to market their individual features and benefits.

Customer and Vendor Relations

The existenice of the consortium provided the technical
benefits mentioned above and it also freed HP, Compag,
and other consortium members to establish the necessary
customer and vendor relationships that would eventually
be necessary to manufacture products. Nondisclosure
agreements were established between HP and several
connector manufacturers. This allowed HP to negotiate
supply contracts and characterize their business needs
independently of any HP competitors. This provided the
necessary business and product planning isolation be-
tween HP and all other competitors.

During the development process it was a challenge to
document and manage the flow of information between
all parties. Fig. 2 shows how this was done. Each PC
manufacturer was able to negotiate a supply of connec-

tors without disclosing volume, pricing, or new product
schedule to potential competitors. There was no exchange
of information between connector vendors, and each PC
vendor had independent access to the connector manufac-
furers.

EISA Connector Issues

The key issues surrounding the development of the EISA

connector were maintaining ISA electrical and mechanical
compatibility at a competitive cost, and excellent market

perception for the final product.

Compatibility. The compatibility issue meant that the exist-
ing ISA or PC AT boards had to be supported both elec-
trically and mechanically in the new scheme. The new
scheme also had to support a new EISA board that used
the EISA 32-bit burst mode bus. These constraints caused
rejection of solutions that required:

Inereasing the height of the worldwide PC AT product
packages by 0.3 inch

Investigating how many PC AT plug-in cards worldwide
have components in the 1/8-inch space above the connec-
tor

Adding the EISA expansion as a separate outrigger or
tandem connector.

Electrical Performance. The additional EISA signal lines
were specified by the consortium, including power,
ground, and spares. This meant adding approximately 90
pins to those already present on the ISA connector. The
way in which they were added was important because
the goal was not only to provide for the additional EISA
pins, but also to improve the RF performance of the ISA
section to work with TTL bus logic having typical logic
transition fimes of 2 ns. Improving RF' performance meant
that the connector impedance had to match the typical
multilayer printed circuit board trace impedance of 60
ohms, and multiple-line switching crosstalk to a vietim
line had to be less than 20% at 2 ns.* Crosstalk perform-
ance is largely determined by the ratio of the number of
signal pins to the number of ground pins and the isola-
tion provided by the EISA printed circuit board ground
plane, Therefore, the EISA connector had to have a lower

No Competitive
Information Flow
EISA EISA
Connector = —p Connector
Vendor A W/ / Vendor B
o
Information W Information [
|~ Flow S Flow

PC
Vendor A

No Competitive
Information Flow

Fig. 2. Information Aows between PC manufacturers and
connector manufacturers. The goal here was to enforce confi-
dentiality between the connector manufacturers and each PC
vendor they worked with,

October 1091 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

ISA Expansion Board

-<+— |SA Contacis

<————— EISA Contacts

»
f EISA /
EISA Connector __ i il

Keys

EISA Expansion Board

-= Upper-Level Pins
=— Lawer-Level Pins

<« |SA Contacts

= EISA Contacts

EJSACunnemr-f \ ESA /

Access

Keys
Fig. 3. Portions of ISA and EISA expansion boards, showing the
YO pins on each board and a cutaway view of the EISA connector,

signal-to-ground pin ratio than an ISA bus because the

ISA and EISA signals together form a high-performance
bus. Ground planes were assumed to be present in the
motherboard and EISA printed circuit boards, and the

current capacity of the ISA contacts had to be 3A per

contact for ISA power pin compatiblity.

Mechanical Performance and Market Perception. A positive
public perception was important to the acceptance of the
new EISA standard. The connector design needed to
maintain the reference features, seating planes, and inser-
tion force of ISA boards. This was key to the overall me-
chanical design and it also communicated ergonomic
backward compatibility to the user. For this reason it was
decided that the EISA connector should have the same
dimensions as the ISA connector.

EISA Connector Solution

The solution that meets all of the objectives is an exten-
sion of an idea used from the very first scheme pro-
posed—the double-decker (or bilevel) connector. Instead
of adding the EISA signals in front of, on the side of, or
underneath (by increasing the height) of the ISA connec-
tor, the additional signals were added below the level of
the existing signal pins (see Figs. 3, 4, and 5). Incidental-
ly, this solution was arrived at simultaneously by HP and
Burndy Corporation.

At HP this solution evolved from investigating how to add
grounds to the ISA connector section for use with EISA
cards. It was determined that the additional grounds
could be located on a lower level than the ISA contacts.
Since the ground contacts had to be as reliable as the
signal contacts, the EISA signals were also located on the
lower level (see Fig. 3).

() (b) (¢)
Fig. 4.7 (a) Cross-sectional view of the upper-level contact of the EISA connector. (b) Cross=sectional view of the lower-level contact of the
EISA cormector. (¢) Cross-sectional view of both contact levels

76 October 1991 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

EISA Access Key

*The pictures of the EISA connector sectians shown in Figs. 4 and 5 were made from
connectors manufactured by Burndy Corporation

Since this design allows EISA signals (including grounds)
in the same motherboard space as an ISA system and the
connector remains the same height, the signal-to-ground
pin ratio for the ISA signals is effectively reduced to S:1.
Improved isolation for the 8.33-MIlz BCLK (backplane
clock) is provided by adjacent RF grounds. Two of the
ground pins are at BCLK so that the gold finger pads are
on opposite sides of the printed circuit board. Thus these
pins can be directly connected to the plug-in board
ground plane with a low-inductance connection.

In addition, the internal ground planes of the plug-in
board under the gold fingers, which play a key role in
determining overall connector electrical performance, can
extend almost to the surface of the motherboard. These
hielp provide electrical isolation between the two halves
of the connector, single-line crosstalk between adjacent
pins of 5% to 7% at 1-ns edge transition times, and a con-
trolled 55-0hm to 65-ohm signal impedance.! An added
benefit of the dual-level contaet structure is that although
the number of contacts doubled, the insertion force only
increased from 28 pounds for the ISA connector to 35
pounds for the EISA connector. The signal density of
each level is the same as the ISA connectors (20 per
inch), thereby minimizing the impact on printed circuit
board manufacturing requirements.

Fig. 5.* Inside view of one half
of an EISA connector. The EISA
access key prevents ISA boards
from being inserted to the depth
of the EISA contacts.

Conclusion

Through a joint effort with other members of the EISA
consortium, we designed a connector that meets all the
technical design requirements necessary for indusiry ac-
ceptance. Given the number of companies and parties
involved, we achieved an extremely fast development
cycle of six months from start of this project to the pro-
duction of the first connectors.

Acknowledgments

We would like to thank the HP team consisting of Bob
Johnson, Peter Guekenheimer, Geoff Moyer, Carl Sieele,
Guy Gladden, Bob Campbell, Kim Tanaka, and John Neu-
neker. We should also recognize the effort and contribu-
tions of the Compaq design team, and the engineers of
Amp Ine, and the Burndy Corporation.

References

1. Ertended Industry Standard Arvchitecture, Revision 3.10, 1989,
BCPR Services, Inc.

2. L. B. Glass, “Inside EISA,” BYTE, November 19589, pp. 417425,
4. T Dowden, Inside the EISA Computers, Addison Wesley, 1990.
4. AMP Designer Digest no. 5.3, AMP incorporated., pp. 6-8,

October 1991 Hewlett-Packard Journal - 77

© Copr. 1949-1998 Hewlett-Packard Co.

]

The HP Vectra 486 Memory Controller

The memory subsystem architecture and the memory controller in the HP
Vectra 486 personal computer provide a high-performance burst-mode

capability.

by Marilyn J. Lang and Gary W. Lum

During the investigation phase for the HP Vectra 486 per-
sonal computer, in-house performance tools confirmed
that the memory system was a key to overall system per-
formance (see article on page 92). Selecting an optimal
memory and controller architecture for a high-perform-
ance memory subsystem was a major design consider-
ation for the HP Vectra 486 design team.

While performance was considered important to the suc-
cess of the HP Vectra 486, it was but one of many impor-
tant factors to consider for the memory controiler design.
The PC server market (a target for the HP Vectra 486)
continues o demand more memory, yel entry level sys-
tems require a small starting memory and incremental
memory size. There is also an emerging need to simplify
the installation and configuration of memory by both cus-
tomers and dealers. We were also anticipating future In-
teld86 microprocessor speed upgrades, and wanted a
memory architecture that could support these upgrades
with minimal changes. And, of course, we were striving
to deliver, al a compeltitive price, a system that included
the EISA standard.

From these requirements, the memory controller objec-
tives became the desire to:

Meet the HP Vectra 486 schedule and cost structure
Provide competitive performance for 25-MHz systems
Have a large and logical memory upgrade scheme
Provide a design for supporting higher-speed Vectra 486
systems.

With these objectives, the design team began investigating
relevant technologies that would help determine the opti-
mal feature sef. Three main areas were focused on: the
Intel486's burst-mode capability, the 4M-bit DRAM, and
the emerging 36-bit SIMM (single in-line memory module)
standard for PCs.

Investigations

The Inteld86, with its on-board SK-byte cache, uses burst
mode to fill a cache line from an external memory sys-
tem. Burst mode, long used in larger computer systems
but new to personal computers, is a more efficient meth-
od of transferring data. Rather than transferring only a
single piece of data for each address generated, burst
mode allows multiple pieces of data (typically four
dwords*) to be transferred for each address. Since subse-
quent addresses need not be generated, fewer cycles are
required fo move information, and bandwidth increases.

*32 hits

78

October 1991 Hewlett-Packard Journal

Supporting burst mode, on the other hand, requires more
complexity than traditional memory or cache confrollers.

Using our available performance tools, the Intel486 burst-
mode capability was matched with various memory archi-
tectures, ranging from a simple, single-bank memory array
to a cached, multiple-bank configuration. The single-bank
memory array was quickly dropped, because it was not a
competitive solution. The key finding from this analysis
was that for 256-MHz systems, by using the burst-mode

- capability in the Intel486, a DRAM memory controlier

communicating directly to the Intel486 could compare
quite favorably with a moderately sized external memory
cache. This was particularly true for cache controllers
that only supported burst mode between the Intel486 and
the cache (or did not support burst mode at all). When
the cost of the cache was factored in, the interleaved,
bursting memory controller was the clear preference for
the Vectra 486.

The 4M-bit DRAM was scheduled for production about
the same time the Vectra 486 was fo be released. Al-
though the 4M-bit DRAM would provide the highest
memory density available, it was considerably more costly
than the 1M-bit DRAM, which had been in production for
several years. Being able to support both densities would
allow us to exploit both the 1M-bit and 4M-bit advantages.
Standard memory configurations could be buill with the
cost-effective 1M-bit DRAMs, while large memory arrays
could use the 4M-bit. Furthermore, as the 4M-bit DRAM
progressed down the production cost curve, we could
move quickly to it when prices became atiractive, By
working closely with some of our key memory vendors,
we were able to secure prototype and production vol-
umes of 4M-bit DRAMs for the Intel486.

Previous HP personal computers had used SIMMs, and
the general feedback from our customers and dealers was
very positive. A SIMM is a small printed eircuit board
with memory installed on it (typically surface mounted).
An edge connector on the SIMM allows a customer to
install it easily into an available connector. The typical
SIMM organization is nine bits wide (eight data bits and a
parity bit) and the edge connector has 26 pins. During
Intel486 development a new SIMM organization was be-
ginning to get atfention—36 bits wide with a 72-pin edge
connector—which allows a full dword (32 bits plus par-
ity) to be on a single SIMM. This SIMM also supports
presence detect, which encodes the size and speed of the
module on four of the 72 bits, and allows the module

© Copr. 1949-1998 Hewlett-Packard Co.

characteristics to be read directly from the SIMM. The
new SIMM was already available in IM-byte and 2M-byte
densities. Both densities use 1M-bit and 256K-bit DRAMs,
but at the time none used the 4M-bit DRAM. Working
with our key memory vendors, we were able to establish
standard 4M-byte and 8M-byte SIMMs,

From these investigations and other discussions, the In-
tel486 memory controller feature set was defined to in-
clude:

Intel486 bursi-mode support

2M-byte to 64M-byte memory array size

Minimum memory upgrade size of 2M-bytes

Support for 1M-byte, 2M-byte, 4M-byte, and 8M-byte
SIMMs

Support for shadowing or remapping of 16K-byte memory
blocks

Full support for EISA devices, including bus masters.

Since many of the features we wanted to include involved
new technologies, no commercial memory controllers
were available that supported our feature set. Further-
more, a short investigation concluded that using an exist-
ing memory controller with additional surrounding logic
to support the new features would not meet our cost or
performance goals. We decided that the best design ap-
proach was to develop a new controller using an ASIC to
implement the memory controller.

Memory System Architecture

The memory system is completely contained on a 5.6-inch
by-13.3-inch memory board, and uses a proprietary con-
nector on the Vectra 486 motherboard. The memory sys-
tem sits directly on the 25-MHz Intel486 bus.

Allocating board space for the memory controller, the
DRAM drivers, and other support logic, a maximum of

CLK

eight SIMMs can be accomodated on the board. When
populated with 8M-byte SIMMs, this allows a maximum
memory size of 64M bytes. This is four times what pre-
vious HP personal computers had supported.

In burst-mode operations, the Intel486 is capable of ac-
cepting one dword each processor clock cycle. At 25
MHz, this means an ideal memory system would be able
to deliver one dword every 40 ns. Since we were using
80-ns DRAMSs, a simple 32-bit memory array was clearly
not sufficient to meet our performance goals. Two possi-
ble architectures were investigated: a 128-bit-wide
memory array and a 64-bit-wide memory array. With a
128-bit memory array, all four dwords would be fetched
on the initial InteldS86 memory access, and one dword
output on each of the four clock cycles. For the 64-bit
memory array, two dwords would be fetched using the
Inteld86-generated address, and two more dwords fetched
using an address generated by the memory controller. The
additional address generation requires another clock
cycle, so the 64-bit memory array provides four dwords in
five clocks, rather than four clocks. Although this was
slower than ideal, the 64-bit-wide memory system allowed
a minimum system configuration and upgrade increment
of 2M bytes, rather than the 4M bytes required in the
128-bit architeeture. We decided the 64-bit-wide memory
array provided the best overall solution for the Vectra
486.

Fig. 1 shows the block diagram of the Vectra 486 memory
system. The 36-bit SIMMs are organized in pairs, creating
the 64-bit-wide memory array. SIMMs 1, 3, 5, and 7 con-
tain the lower-order dword, while SIMMs 2, 4, 6, and 8
contain the higher-order dword. Each SIMM pair must be
of the same SIMM density, but different density pairs are
allowed in the memory array. The memory array is fur-

e SERDYO# - ‘
ol HOST_ADDRESS(31:0) - EREAD_OE(3.0)
g Host Control (BLAST#, ADS # | Wemory EBRDY# o —P REALOFAH
fd Controller i S
§IMM Conflguration(5:0) | e
m\:su: | L WRITE_OED)
RAS(7:0)

A

MA(8:0) WE#
AAS(T:0) w P LATCHOATA(10)
|

’9“5 8 CAS(31:0)
SlliMs n AS(75)

‘ castzm.
-qu

b uPPER_MD CAS(19:8)

PO{T:0)

LATCH_DATAD
WRITE_OE 0

READ_OE2
4

RAS(T:B)
£AS{31:26)
RAS(5:4)
CAS(20:20)

LATCH_DATA 1
WRITE_DE 1
READ_QE 3

|
*Ilﬂh RAS(3:2)
S c
{ RAS(1:0)
CAS(3:0)

LATCH_DATAD

WRITE_OE D
READ_OE 0

LOWER_MD{31:0)

—
Sihs AAS|3:2)
R | cuers

RAS(1:0)
CAS(T:4)

— LATCH_DATA1
WRITE_OE 1
READ_OE1

HOST_DATA{31:0)

Fig. 1. The Vectra 486 memory

subsystem.

October 1991 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

ther divided into upper and lower memory halves (UP-
PER_MD and LOWER_MD) to reduce the maximum capaci-
tance on each memory data line. Although this increased
part count on the board and loading on the system host
bus, it improved timing margins in the the most critical
system timing paths.

Data transceivers are used to move data between the
Intel486 and the memory array, and sit directly on the
system host data bus (HOSTDATA(31:0)). Since the 64-bit
memory system requires two memory accesses for each
Intel486 burst access, latching data transceivers are used
to output data from the first feich while the second 64
bits are read.

The generation of memory addresses and control signals
by the memory controller is complicated by the organiza-
tion of the SIMMs. The IM-byte and 4M-byte SIMMs are
organized as a single block of memory (or memory bank),
256K deep by 36 bits wide and IM deep by 36 bits wide
respectively. Each memory bank has one row address
strobe and four column address strobes (one for each
byte). The 2M-byte and 4M-byte SIMMs, however, are or-
ganized as two banks of memory. The 2M-byte SIMM con-
tains two 1M-byte banks, and the 8M-byte SIMM contains
two 4M-byte banks. These two-bank SIMMs have two row
address sirobes (one per bank) and four shared column
address strobes (to select one of four bytes in both
banks). A SIMM socket can contain either a one-bank or
a two-bank SIMM.

To correctly control the one-bank or two-bank SIMMs, the
memory controller generates row address strobes and
row addresses to the array based on the memory bank
configuration. Each SIMM pair contains either one or two
banks, depending on the SIMM installed. Eight row ad-
dress strobes (RAS(7:.0)) are generated directly from the
memory controller, two for every SIMM pair. For a 2M-
byte or 8M-byte SIMM the memory controller uses both
row address strobes. For a IM-byte or 4M-byte SIMM
only one address strobe is used. The row address appears
on MA(9:0) when the row address strobe goes active.

The memory controller also takes advantage of the page
mode capability of the SIMMs, and keeps the row address
strobe asserted in each memory bank. If a subsequent
memory access falls within an active page (has the same
row address as a previous access fo the bank), the much
faster page mode access is performed.

The column address strobe and column addresses to the
array are generated from the four column address strobes
from the memory controller (SCAS(3:0)), providing one
strobe per SIMM pair. Because the Inteld86 can operate
on a single byte of data, each byte in the array is made
individually accessible. Each SIMM has four column ad-
dress strobes, so 32 strobes (CAS(31:0)) are generated for
the eight SIMMs by combining SCAS(3:0) with eight byte
enable signals (BE(7:0)). BE(7.0) is also used to generate the
direction controls (READ_OE and WRITE_OE) and latch signal
(LATCH_DATA) to the data tranceivers.

Parity is also handled on a byte basis. Because of

memory controller pinout and timing, parity generation
and detection are implemented using PALs and random
logic. Another PAL is used as a SIMM presence detect

80 October 1991 Hewlett-Packard Journal

encoder, which reads four presence detect (PD) bits from
the first SIMM of each pair and encodes them into six
SIMM_CONFIGURATION bits. This encoding specifies several
different possible memory configurations, including com-
binations of 1M-byte and 4M-byte SIMMs, or 2M-byte and
8M-byte SIMMs. When used with the EISA configuration
utility, the presence detect capability allows the user to
configure memory from the screen.

To accommodate the Inteld86's 33-MHz timing (which was
not available during the design phase of the project), the
READ_OE signals to the data tranceivers are generated one
clock early and pipelined through an external registered
PAL. This scheme ensured that the read path was as fast
as possible. It also gave us some flexibility in host bus
timing, in case of changes in CPU timing.

Memory Controller Architecture

Fig. 2 shows a block diagram of the Vectra 486 memory
controller. There are seven major blocks in the memory
controller. The configuration registers contain address
range, remap and shadow regions, and other memory con-
figuration information typically set by the BIOS at power-
on (see the article on page 83). The 8bit XD bus, a data
bus available on all PCs, is used to access all memory
controller registers because fast access is not a high
priority at power-on time.

The memory configuration information, along with the
SIMM configuration information from the presence detect
pins on each pair of SIMMs, is used by the address block
to determine if the current memory cycle on the host
address bus is in the memory controller's address range.
If it is, the address block will also determine which
memory bank is selected, whether it is a page hit or miss
(whether the current row address is the same as an ac-
tive page), and the appropriate DRAM row and column
addresses (MA(9:0)).

Memory cycles that appear on the host bus are generated
either from the CPU or from a backplane device such as
an EISA bus master. Two independent state machines, the
CPU state machine and the EISA/ISA/Refresh state ma-
chine, monitor the state of each device. The CPU state
machine is actually two interlocked state machines. One
machine monitors the host bus and when it sees a
memory request, it starts a second state machine. The
second machine generates the appropriate CPU_CYCLE _CNTL
signals (page hit or miss, dword write, or one, two, or
four dword read). The CPU state machine is fully syn-
chronous with the Inteld86 processor clock.

The EISA/ISA/Refresh state machine generates control
signals for all other cycles. This machine supports EISA
burst read or write cyvcles, EISA- and ISA-compatible
DRAM refresh, and all ISA cycles. Because ISA is an
asynchronous bus, the EISA/ISA/Refresh state machine is
a semi-synchronous state machine, and uses BCLK (the
backplane clock), and external delay lines to generate the
BACKPLANE_CYCLE_CNTL signals.

The CPU_CYCLE CNTL and BACKPLANE_CYCLE_CNTL signals are
generated on every memory cycle. Each set of signals

includes the DRAM timing relationships that optimize the
respective CPU or backplane device bus cycle. HLDA (hold

© Copr. 1949-1998 Hewlett-Packard Co. '

Host

s HOST_ADDRESSI1:0)
&
TSI = CPU_CYCLE ONTL
1.16-MHz
Osclllstor

EISAISA/
Refresh
State
Machine

Test XD Bus
Signal

acknowledge) is used as the select signal to a multiplexer
to determine the correct set of signals. Once the correct
CYCLE CNTL is selected, the corresponding DRAM control
signals RAS, CAS, and WE are generated for each bank via
the DRAM interface block. The byte, word, and dword
addressability of the memory array is also handled by the
DRAM interface block, which generates the appropriate
data transceiver control signals (READ_OE and WRITE_DE).
For the Vectra 486, all memory reads are 64 bits while
memory writes can be one byte, one word (two bytes), or
one dword (four bytes).

The row address strobe timeout clock is used for DRAM
timing. The maximum time a page can be open (RAS ac-
tive) is 10 us. Since it is possible to exceed this limit
during an EISA burst cycle, continuous page hits, or a
long Intel486 idle time, it is necessary to monitor the time
each bank is active. Eight timeout counters, one for each
bank, monitor the active page time. Counters are enabled
when the row address strobe is active, reset when the
row address strobe goes inactive, and clocked by an ex-
ternal 1.16-MHz oscillator. When the timeout limit is
reached, RAS_TIMEOUT is generated. The CPU state ma-
chine and the EISA/ISA/Refresh state machine will then
finish the current memory cycle and allow the DRAM
interface block to disable the timed-out DRAM page. In
some instances it is possible to disable a page without
incurring any clock penalties because a page hit on one
bank can be done while turning off a timed-out bank.

The test block is used to debug and test the memory con-
troller chip. An external test pin puts the memory control-
ler into the test mode. In test mode, external address
lines are used Lo select which signals and state machine
states are put on the internal test bus. The internal test
bus contents are available via the XD bus.

Row Address Strobe (RAS)

Column Address Strobe (CAS)

Write Enable (WE)

Output Enables (WRITE_OE, READ_OE)
DRAM and
Data Latch
Control

Memory Addresses

Byte Enable
SIMM
Configuration

Configuration
Registers

Fig. 2. The Vectra 486 memory
controller.

Burst Mode Read

All Inteld86 memory requests are initiated by placing the
memory address on the host address bus, setting appro-
priate control lines (i.e. memory read or write) and strob-
ing ADS# Fig. 3 shows some of the key timing for a burst-
mode read cycle for four dwords. One of the control
lines, BLAST# (burst last) is asserted if the Inteld86 re-
quests a burst-mode cycle. If the memory system is inca-
pable of supporting bursi mode, it will return a single
dword and assert RDY# (ready). If the memory system can
support burst mode, it will assert BROY# (burst ready) and
return two or four dwords depending on the type of In-
teld86 request. The Intel486-generated memory address is
used to fetch the first two dwords, and a second address
(incremented by two dwords) is generated by the memory
controller to complete the four-dword burst read.

Returning a burst-mode request entails several operations
within the memory system. For simplicity, we assume a
DRAM page hit (for a page miss, additional cycles are
required to generate a row address strobe and row ad-
dress). When the Intel486 requests a burst cycle, it will
output an address for each of the four dwords in the
burst. These addresses (and respective data) follow a
particular sequence, depending on the initial address sup-
plied by the Intel486. The memory controller uses only
the initial address because the subsequent addresses from
the Inteld86 would not meet our system timing. The
memory controller will latch the initial address and gener-
ate the identical sequence earlier in the burst cycle.

There are four possible address sequences, determined by
the state of HOST_ADDRESS(3:2):

October 1991 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

| | | |
' - — —
Lt _[l |4‘ ‘ F |
| 1 S—
| i : | | |
ADS# | o | 4 —
(Address Strnhe: ' \ I I I :
= H !
HOST_ADDRESS(31 o] Burst Address 1-3 Ignored II
= = 1 |
I l \ I
|

_—
|

I
I
|
|
——— I
Burst _C_f:l_?m Address 2

XA

|
m\qsmr’/‘- i T
N ek MITBSRL BROCKXRICRARRR
{Memory) : | : i i
s | T — | S S
(Column Address [/ I N\ ! b o
Strobe) | | } | | :
1] : | 1
¥ D o O o o o] 7
dwords 0.1 PO _al',:': dwords23 | _E_
| —_——+—h
LATCH_DATAD I_ ! i -y | ! s
koo T T \ | e
LATCH_DATAY | 1/ I i I | | /' Readl Read |
: = B | | [i =i o
READ_OF : I | | . i B . | . Low dword IH|gh uﬂwurd
(Read Output | | Disable ! |Read Low dword| Read High dword | i‘ ' ol | _f‘
Enable) | . ! ! ! : _ L Dlsahle
HOST_DATA(31 an X dword 0 | dword1 | | dword 2 [Uwurda r
l | [| ! |
BROY# | _ T\ 1/ ™\ : l y '_4|—
(Burst Ready) l I | —{ : ¢ 4 _:_ l
) | !
e = | IS I I 1 I [
ADY# | | | | | | I i 1./ Fig. 3. The Limi relati :hins
| i ! i i f ig. 3. The timing relationships
(Ready) | i : I : | | I | between the signals involved in
doing a burst read hit of four
Indicates Active Low dwords.
Address dword0 dwerdl dword2 dword3 One clock later, both data latches are open, and the third
Sequence address address address address and fourth dwords are put on the host data bus in con-
secutive clock cycles. The memory controller completes
I xx 00 xx 01 xx 10 xx 11 ¥ B 4
the burst-mode read by generating a SERDYO# (shared early
2 xx 01 xx 00 o iU | xx 10 ready) signal. This signal is input to a logic block in the
3. xx 10 e Al xx 00 xx 01 Vecira 486 memory subsystem which forms the RDY# sig-
' _ nal to the Intel486 (see Fig. 1). In the Intel486 a burst
4 xx 11 xx 10 xx 01 xx 00 mode read cannot be prematurely terminated, so once a

xx = HOST_ADDRESS(31:4)
00, 01, 10, 11, = HOST_ADDRESSI3:2) or A3 A2

The memory controller will generate the correct address
sequence by toggling A2 on each dword. The third and
fourth dwords differ in A3, so the second memory read
has a column address that differs from the first only in
one bit.

To improve burst-mode timing, rather than waiting for
BLAST# to be asserted (which may come relatively late in
the cyele), the memory controller assumes every memory
read is a burst-mode read, and begins generating CAS,
READ_OE and BRDY# signals. The memory controller will
refurn BRDY# with the first dword of every read cycle. The
memory confroller will then use BLAST# (now valid) to
determine if the request was for a burst read. If it was
not, a RDY# will be generated, the second dword read ig-
nored, and the cycle terminated. If it is a burst read, then
CAS is precharged in preparation for a second memory
read, the first and second dwords are latched in the data
transceivers, and the second dword is output. BRDY# is
returned for the second dword on the next clock cycle, at
which time the second memory read begins and the first
data latch is opened 1o receive data for the third dword.

82 October 1991 Hewlett-Packard Journal

burst sequence has started, all four dwords must be read.

Conclusion

The memory controller design began at the same time as
the HP Vectra 486 SPU (system processing unit), and re-
mained the critical path component for most of the devel-
opment schedule. The projeci team successfully met the
HP Vectra 486 schedule objective by delivering a fully
functional first-pass memory controller chip. This chip
revision was used for the HP Vectra 486/25T production
until introduction of the HP Vectra 486/33T memory con-
troller version. Fig. 4 shows one of the memory bench-

System External Cache Size

Vectra 486 Vendor A Vendor B Vendor C
None 128K-Byte Cache 64K-Byte Cache 128K-Byte Cache
Lotus Benchmark
{Relative Performance) 149 Hes - g
Integer Sort (K Stones) 778.89 763.55 782.83 8268.88

Fig. 4. Memory benchmarks run on the Vectra 486 and other
cached Intel486 25-MHz machines,

© Copr. 1949-1998 Hewlett-Packard Co.

marks run on the HP Vectra 486 and other cached
25-MHz Intel486-based machines.

Acknowledgments

Key to the success of the HP Vectra 486 memory control-
ler were the other members of the design team: Sridhar
Begur, Stuart Siu and Deepti Menon. Wes Stelter was re-
sponsible for the memory bhoard design, and provided
much assistance during initial chip debug. Carol Bassett
led the vendor selection investigation and the writing of

the data sheei. Bob Campbell contributed to the initial
architecture, while Mark Brown provided project manage-
ment during the initial definition and architecture phase.
Wang Li and the HP Circuit Technology Group deserve
special recognition for their execution and delivery of
prototype and production chips.

Bibliography
1. i486 Microprocessor Data Book, Intel Corporation, 1981
2. 82350 EISA Chipset Data Sheet, Intel Corporation, 1989,

The HP Vectra 486 Basic I/0 System

An Intel486 processor, the EISA bus standard, and a new memory
subsystem all required enhancements to the Basic I/0 System to ensure
that the HP Vectra 486 made the best possible use of these new features.

by Viswanathan S. Narayanan, Thomas Tom, Irvin R. Jones Jr., Philip Garcia, and Christophe Grosthor

The Basic /O System (BIOS) is the lowesi-level software
interface between the hardware and the operating system
in the HP Vectra 486 personal computer. The BIOS con-
sists of a power-on self-test and function support for the
DOS operating system. The power-on self-test performs
testing and initialization of the various components of the
system and loads the operating system. The rest of the
BIOS supports funetions to access the various DOS de-
vices, This article describes the development process and
the features incorporated into the HP Vecira 486 BIOS to
support the Inteld86 microprocessor and the Extended
Industry Standard Architecture (EISA).

BIOS Source Base

The Vectra 486 BIOS code was heavily leveraged from the
source code of the Vectra ES, RS, and QS personal com-
puter series, which support the HP-HIL (human interface
link) BIOS extensions (EXBIOS). The EXBIOS support
was stripped off and support for EISA, the micro-DIN

.’/.-
9% /"'
[e | Vectra ES (80286) 4
\ { Jf [~
. \ / 1 Vectra RS r
1 \ and Q5 (Intel386))
N~ — '
[7
-
| Commen ~_ ¢
' ommon
HP-HIL | Vectra RS'C Micro-DIN

\ (Inte!386 with cache)
Vectra Q5'S

Micro-DIN Base

EXBIOS HP-HIL Base

mouse, and other enhancements were added to create the
Vectra 486 BIOS (see Fig. 1).

To maximize BIOS leverage for future systems, team
members focused on keeping a large part of the new
source files reusable. A common collection of reusable
software modules ensures a more compatible and easily
upgradable software system. This commonality ensures
that during development, potential compatibility problems
only have to be addressed once, and when a compatibility
problem in a released product is fixed in a common rou-
tine, the fix is done once and automatically goes into all
subsequent software releases.

The BIOS development of code was shared between the
engineers at HP’s California Personal Computer Division
in Sunnyvale, California and HP’s Grenoble Personal Com-
puter Division in France. The configuration for transfer-
ring files back and forth between the two groups is

Vectra 486
I/__

-—— Veclra 486257

rr’\— Vectra 486/33T

Fig. 1. HP Vectra BIOS source

corle bases.

Oetober 1991 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

California PC Division
Site Backbone HP Internet

Grenoble PC Division
Site Backbone

BIOS Architecture
« Team LAN

o Tl =T
HP OfficeShare | Version HP OfficeShare m
Server Software | Control System Server Software

2 oMt

a
&
U

|
/Vectra 486 BIOS
/" Team LAN

\

Vectra 486 BIOS
Engineer's PC

BIOS HP OfficeShare
Server

C: = Local Drive
§: = Volume on Server

T | Indicates a Virtual Link to Server

shown in Fig. 2. This code sharing created issues related
to ensuring file security and tracking changes to the code.
For this reason the BIOS source base is managed by a
software revision control system. The source files are
structured into common and machine-specific directories.
The machine-specific files contain code that handles the
initialization requirements of different chip sets and differ-
ent processors and processor speeds. EISA and ISA dif-
ferences are also handled by the code in these files.

EISA Initialization

One of the most important features of the EISA architec-
ture is its ability to detect the /O expansion boards in-
serted in the system’s motherboard slots. The configura-
tion utility easy config generates information for each EISA
or ISA card installed in a system expansion card slot.
When the user is satisfied with the system configuration
with either the defaults presented by easy config or after
making any desired changes, the configuration is stored
in nonviolate RAM.

The configuration files for each board contain function
data structures for each slot that provide information on
the DMA initialization, IRQ (interrupt request) trigger,
memory information, and [/O initialization. easy config re-
solves /O initialization, memory conflicts, and identifica-
tion for the individual expansion boards in each slot.

EISA Configuration Support

Support for storage and retrieval of EISA configuration
information is provided by 8K bytes of nonvolatile RAM
and by system BIOS support routines. The EISA configu-
ration utility easy config uses these routines to clear non-
volatile RAM, store EISA configuration information (on a
slot-by-slot basis), and retrieve information for all func-
tions of a slot (brief format) or for one function (detailed
format). Fig. 3 shows some of the processes involved in
retrieving data from or storing data to the nonvolatile
RAM containing configuration data.

The system BIOS power-on software also retrieves the

configuration data to initialize the hardware in each slot.
After the system boots, other system drivers, utilities, or
the operating system may also store and/or retrieve con-
figuration data (or any other data) from nonvolatile RAM.

84 October 1991 Hewlett-Packard Journal

&

]

/ Gpep 8IS
- Team LAN

————

WP OfficeShare er8i0
Server Software | Control System

l
3 GPCD BIOS

' - ' Engineer's PC

Fig. 2. Communication network
between the BIOS engineers in
California and the BIOS engineers
in Grenoble, France.

To accommodate various operating environments the
BIOS routines that interface to the nonvolatile RAM can
operate in the Intel486’s real or protected modes. In real
mode, 16-bit segments and offsets are used to address a
IM-byte address space. In protected mode, segment regis-
ters become selectors into descriptor tables which with
offsets allow for 16-bit to 32-bit addressing (up to 4 giga-
bytes).

To save space, inpul data is compressed by the caller
before it is stored in nonvolatile RAM by the BIOS rou-
tines. When configuration data is refrieved from memory
it is expanded by the BIOS routines before being passed
to the caller. Expanding the output data involves padding
variable-length data fields and blocks into fixed lengths.
Slot configuration data consists of a variable number of
variable-length function blocks that describe each function
of a card in an EISA or ISA slot. The function blocks
consist of fixed and variable-length fields and variable
repetitions of fixed and variable-length subfields. These
fields consist of descriptive text information and memory,
interrupt, DMA, and /O resource and configuration data.
Free-form data can also be stored in some of these fields.
The slot configuration data is stored sequentially by slot

Expanded 5
&~ Format """ /

= '__.-""J{.:ompressed
" Format

Compressed
Format

A

BIOS
Routines

|
Compressed |
Format

\4
Configuration BK Bytes of
Data Nonvolatile RAM

Fig. 3. Storing and retrieving configuration data to and from
the nonvaolatile RAM. Data is compressed when it is placed in
memory and expanded when it is retrieved.

© Copr. 1949-1998 Hewlett-Packard Co.

number (including empty slots) until the last physical or
virtual slot is reached. The minimum size of a slot’s con-
figuration data is zero (empty) and the maximum size can
be as long as the remaining available space in nonvolatile
RAM.

To access nonvolatile RAM data efficiently (in terms of
speed and space), a table approach is used. A table of
pointers that peint to slot configuration data blocks is
allocated dynamically and grows inward from one end of
the nonvolatile RAM. The data space for slot configura-
tion blocks is also allocated dynamically and also grows
inward but from the opposite end of nonvolatile RAM
(see Fig. 4).When the pointer table and data space meet,
the nonvolatile RAM is full. This technique saves memory
space and allows for a single look-up to reach any data
block.

Power-on Initialization

When the system is rebooted the BIOS initializes one
EISA or ISA slot at a time and one function at a time
using the configuration information stored in nonvolatile
RAM. The initialization proceeds in two steps; error
checking is performed first and then the slot is initialized.

Error Checking. The system ROM BIOS begins the initial-
ization only if the nonvolatile memory's checksum is
good. The BIOS also has to check whether the correct
card is installed in the right slot before it initializes the
card in that slot. The BIOS checks for the following com-
binations in each slot.

*» A slot could be defined as empty according fo the config-
uration data, but the user may have plugged a card into
the slot.

= A slot could be defined to have a particular identifier ac-
cording to the configuration data but may he read as
empty.

* A slot could be defined to have no readable identifier ac-
cording to the configuration data but BIOS reads an iden-
tifier from the slot.

* An identifier read from the slot may not agree with the
identifier in the configuration data,

‘
(=]

=

y Configuration
Data
Growth Direction

Nonvolatile RAM for Dats

Growth Direction
for Pointers

S e
a—
T O
|
~ IFFEH
Fig. 4. Organization of pointers and slot conliguration datain

nonvolatile RAM.

An identifier for a slot is checked by reading certain slot-
specific /O ports as defined by the EISA specifications.
After verifying that the slot that needs to be initialized
has the correct card in it, the BIOS start the initialization
for that slot. Fig. 5 shows the error checking process
performed by the BIOS during initialization.

Slot Initialization. As in error checking, slot initialization
data comes from the configuration data in nonvolatile
memory. The configuration data for a slot is retrieved as
a block of data, and there could be many blocks of data
for a particular slot. Fig. 6 shows the flow for slot initial-
ization.

Slot initialization starts with the BIOS code reading a
block of data from nonviolatile memory for a particular
slot. It checks to see if there are any DMA initializations
for that slot. If DMA is not shared, then the BIOS initial-
izes the extended DMA registers defined for that slot.
Next the code checks to see if the slot has any IRGs that
need to be set as edge- or level-triggered. It then sefs up
the cache map for noncacheable regions as defined for
that slot. The code then continues with the IO initializa-
tions il any. Once this sequence is complete the code
continues with the next funetion for the slot until all the
functions are completed for that slot.

The BIOS provides a feature that allows the user to make
blocks of memory cacheable or not. This is very useful
for boards that have memory-mapped I/O. The BIOS
builds a cache map in which each bit defines the cache
on/off state of a particular segment (each segment is 64K
bytes). A function in the configuration information for a
slot can define the start address of the memory and the
length of memory for which caching needs to be turned
on or off. The BIOS initially sets all segments’ caching to
be on. It then checks for segments of memory for which
the caching needs to be furned off and then turns caching
off for the segments that are within the memory length
specified. The cache map is updated and is later used in
the boot process to initialize a 64K-bit static RAM, which
the hardware uses in its cache on/off logic. Each bit of
the static RAM represents a segment, allowing 64K seg-
ments (or four gigabytes) to be represented (see Fig. 7).

The BIOS then initializes the various VO ports as defined
in the configuration data. The I/O can be 8-bit, 16-bit, or
32-bit reads or writes. The configuration data also defines
the mask for the particular VO port. Thus, the I/O port is
read, the data is masked (ANDed) with the mask value,
ORed with the bits that need to be set, and written back
to the /O port.

Finally the BIOS enables the board in the initialized slot.
Any time the initialization fails, the BIOS makes sure that
the system can boot from a flexible disk and that the
video is initialized correctly. This is done so that the ma-
chine is in a minimum working state so that the user can
execute easy config and reconfigure the system.

Variable Speed Control

For backwards compatibility, it is sometimes necessary 1o
reduce the speed of the PC. This is particularly true for
copy-protected software applications that are speed sensi-

October 1991 Hewlett-Packard Journal -~ 85

© Copr. 1949-1998 Hewlett-Packard Co.

Is
Configuration
Storage Valid?

Report Configuration

Error and Abort
Initialization

Begin with Siol 0

Read Configuration
Information lor
Current Slol

Isit
&n Invalid

Siot? Slots Initialized

Initialize Slot
Go to Next Slot

Read ldentifier in
Configuration Data

Read Board
Identifier Porls

Board Present
with Readable
Does the Identifier?
Board Have a
Readable
Identifier?
Is
the Board
Ready in
100 ms?

®

Fig. 5. Error checking during power-an initialization.

tive. The Vectra 486 can reduce its speed for all opera-
tions, or only for flexible disk operations. The system
BIOS is responsible for this control. To change speeds the
BIOS programs the duty cycle of a square wave generated
by a hardware timer which modulates the Spd_Hold_Req
(hold request) input of the microprocessor (see Fig. 8a).

IF the microprocessor did not have an internal cache then
it would effectively be idle while it relinquishes the bus
during a hold request. lis effective speed would thereby
be reduced by the modulation factor. Since the Inteld86
has an internal cache it will continue execution, even

86 October 1991 Hewletl-Packard Journal

All Physical and Virtual

Slot Is Really
Empty. Go to Next Slat

Read Board
Identifier Ports

Read Board
Identifier Ports

ls
Board Present
with Readable
Identifier?

Does Board
Identilier Malch
Slot identifier?

Report Error

Inftialize Siot

Last
Function for
the Slot?

Read Next Function
for the Slot

Initialization Complete
for this Slot. Enable Slo

when in a Hold state, until a cache miss occurs, when it
must wait for the bus. Therefore, to control the micropro-
cessor's effective speed accurately when it is reduced
from its maximum (unmodulated) value, it is necessary to
disable and flush the processor’s internal cache. With its
internal cache empty, the processor will halt execution
(because of cache misses) until the modulated
Spd_Hold_Req signal is deasserted. The BIOS programs an
/O port which disables and flushes the internal cache via
the Intel486 control lines. This avoids having to use the
Intel486 control registers to disable the cache. These con-

© Copr. 1949-1998 Hewlett-Packard Co.

Initialization?

Does
Slot Have

1

Sel iRQ for Edge
or Level Triggering

IRQ
Initialization?

Sel Coche Map 10 Indicate
Reglons that Are not Cached

Slol Have

Any 10

Initialization?
Is

There a Mask

for O
Initialization?

Mask 1/0 Port Data with
Configuration Mask Value

v
Initiafize Port and
Continue with Next Function

e

Fig. 6. Flow for slot initialization.

trol registers could be in use by other software applica-
tions and might be disrupted by the actions of the BIOS,

If the speed is restored, or after a flexible disk access
when at autospeed® the BIOS reprograms the cache con-
trol /O port and the duty eycle of the square wave (see
Fig. 8b). Therefore, the control state of the cache is main-
tained after resumption of maximum speed without inter-
fering with resources (Intel486 control registers) that ap-
plications may depend upon.

Micro-DIN and Security Features

The input system consists of three components: the input
devices, BIOS functions, and the Intel 8042 keyboard con-
troller. The 8042 keyboard controller communicates with

*At autospeed the system operates at its highest speed unmodulated and switches 1o an
affective speed off HHz (modulated only when it 1s accessing a flexible disk

the keyboard and an auxiliary device in a bidirectional,
serial format with a synchronized clock generated by the
input device. The auxiliary device may be any type of
serial input device compatible with the 8042 keyboard
controller interface. Some of these are: mouse, touchpad,
trackball, and keyboard.

The 8042 kevboard controller receives the serial data,
checks the parity. translates keyboard scan codes (if re-
quested), and presents the data to the system as a byie
of data. It also provides a password security mechanism
to support the network server mode and application soft-
ware.

Additional security features of the Vectra 486 PC are the
power-on password and the mechanical keylock. Both
schemes are designed to prevent unauthorized access to
the PC. The BIOS provides the software to support the
power-on password feature whenever the Vectra 486 is
powered on.

The password function can be configured via the easy
config utility to request a password either when the PC is
powered on, or only when a user needs to use the input
devices. If the PC is configured to requesi a password,
the BIOS will display a graphical key symbol to prompt
the user for the password. If the user types in the correct
password, the PC will continue with its initialization.
Otherwise, the BIOS allows three attempts for the user to
type in the password before halting the CPU. If the user
knows the correct password, the BIOS will allow the user
to change or delete the password during the power-on
sequence.

When the password is set up to allow limited access,
which is also known as the network server mode, all mi-
ero-DIN input devices are disabled via the 8042, A PC
configured as an unattended file server would typically
install the password in the network server mode. In the
network server mode, if the BIOS detects a diskette in
drive A, it will prompt the user for the installed password

Each Segment)
64K Bytes

-
B
=

Segments 4 Gigabytes

E

54K Bits —’I

1 = Segment Cacheability Off
0 = Segment Cacheability On

=H-
H-
-
E-

Cache Map

|

Fig. 7. Cache mapping scheme.

October 1991 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

System Refresh ’

Fig. 8. Timing relationships in-
volved in speed control. (a) For

Clock
Spd_Hold_Reg ‘ J [[| [|
| |T L T
-—f1) I {2)—13)
Cache Flushed |_ Duty Cycle Set (1) Microprocessor Runs at 25 MHz 100% of the Time
and Disabled to X% from 100% (2) Microprocessor Runs at 25 MHz X% of the Time
.] {3) Microprocessor Idle with Cache Flushed and
BIOS Changes Speed Disabled 100 — X% of the Time
{al
= ™ R mEnBelt sk E el b ——
Spd_Hold_Req I
X'_ UL 7| LU g Al 1.{
BIOS Changes Speed BIOS Starts Flexible Disk BIOS Changes Speed
to Effective 8 MHz Flexible Disk Access Access Ends Back to 25 MHz and
(b} Cache Enabled

because an unauthorized user may be trying to gain ac-
cess to the PC via a bootable diskette.

The mechanical keylock, used for locking the input de-
vices, can be used in conjunction with the power-on pass-
word to provide maximum security. If the keylock is in
the locked position and the password function is installed
to request the password at power-on, then the user will
have to unlock the keylock before typing the password.
But if the password function is installed in the network
server mode, the keylock doesn't have to be unlocked to
type in the password until a user needs to use the input
devices.

Since the user may occasionally forget the installed pass-
word, the BIOS supports a DIP switch within the Vectra
486 that disables the password. The BIOS uses this
switch to allow the user to erase the password without
any knowledge of the installed password. This switch is
also used to forbid the installation of a password by an
unauthorized user. To access the switch, the user must
unlock a mechanical keylock to open the PC.

Shadowing and Remapping

The system memory of a Vectra 486 is parfitioned into
three areas: base memory, reserved memory, and ex-
tended memory. The base memory is within the physical
address range from 0 to 640K bytes. The reserved address

100000
ROM BIOS
Fo00O0 OnBoard
£0000 Option ROMs
1/0 Adapters
00000 and

Memory

Driver:
£8000 ool

Video ROM
BIOS

Video Display
Area and
Video RAM

A0D0D =
, I

coooo
Bo00O

Fig. 8. Reserved memory organization.

88 October 1991 Hewlett-Packard Journal

fixed speeds, (b) For autospeed.

space is within the physical address range from 640 bytes
to 1M bytes. Lastly, the extended memory area is all
memory above 1M bytes. This memory architecture is
known as the PC AT system memory architecture.

Most software applications typically use the base area
and some use the extended memory area. The reserved
memory is set aside for special system functions and is
generally not available for typical software application
use. The reserved memory is organized to support the
main functional components of a microcomputer (see Fig.
9). The video display area and the video RAM can occupy
the lowest portion of the reserved address space, A0000
to BFFFF. The video ROM BIOS can begin at C0000 and
typically ends at C7FFF. The address space that begins at
(8000 and ends at DFFFF is reserved for special /O
adapters and memory drivers. EO000 to EFFFF is used
for onboard option ROMs or backplane /O ROMs (lo-
cated in the /O slots for ISA or EISA cards). F0000 to
FFFFF is reserved for the Basic Input/Ouput System (sys-
tem ROM BIOS).

Since the introduction of this architecture, the cost of
memory devices has declined while the density and speed
of the components have increased. Processor speeds have
increased far beyond the speed that any programmable
read-only memory device can effectively support. With the
advent of 32-bit bus architectures, systems can physically
address four gigabytes of memory, which can be used to
support larger, more complex software applications.

Better system performance can be obtained with efficient
management of the reserved memory. The Vectra 486
makes use of two memory management schemes: ROM
BIOS shadowing and memory remapping. ROM BIOS
shadowing is a method used to speed up ROM memory
access so that portions of reserved memory that are fre-
quently used can be accessed as quickly as possible.
Memory remapping permits unused reserved memory to
be used as extended memory.

Shadowing. BIOS and video ROM BIOS routines and data
are stored in EPROM (electrically programmable read-
only memory). This type of memory is considerably slow-
er than dynamic random access memory (DRAM). Since

© Copr. 1949-1998 Hewlett-Packard Co.

the BIOS and video ROM routines are frequently used by
the system, contents of the ROM BIOS and video ROM
are copied into memory having a faster access time. This
technique is known as shadowing.

The conventional organization of the reserved address
space, in Fig. 9, shows the locations of the system RAM
and BIOS ROMs. In the Vectra 486, as in other microcom-
puting systems, the conventional organization of reserved
memory is enhanced to accommodate some additional
system RAM which is located at the same address loca-
tions as the system BIOS and video ROMs (see Fig. 10).
This memory is called shadow RAM. Another advantage
of shadowing is that memory fetches for the Intel486 can
be accomplished four times faster because the EPROM is
an 5-bit device and system DRAM consists of 32-bit de-
vices.

The conventional approach to shadowing is to copy the
contents of the system ROM BIOS and video ROM BIOS
to some temporary location. The ROM is then disabled
and the shadow RAM is enabled. THE BIOS information,
which currently resides in the temporary storage area, is
copied into the shadow memory at the same memory
address locations from which the information was origi-
nally retrieved. Following the shadowing process, any
data that was originally in ROM will be accessed from
the corresponding location in the faster shadow RAM.
This approach requires that the state variables of the
memory controller indicate whether the ROM or the shad-
ow RAM is being accessed and if write access to the
shadow memory is permitted. These state variables pre-
vent data corruption by ensuring that either the ROM or
the shadow RAM is enabled at any time, but not both,
and that, once copied, the contents of the shadow
memory cannot be inadvertently overwritten.

The disadvantage of the conventional shadowing method
is that system memory control states are wasted. The
Vectra 486 overcomes this problem by eliminating the
ROM and shadow RAM enable variable. The write protect
and shadow RAM enable variables are combined into a
single state variable. On power-up, the default state of the
system will read BIOS (system and video ROM) data from
ROM and write this data to the BIOS address space in
the shadow RAM. Whenever the shadow RAM is enabled,
data read from the BIOS address space will be read from
the shadow memory and all write operations to addresses
within the BIOS address space are ignored. The shadow-
ing method used in the Vectra 486 system results in a
tremendous savings of hardware and valuable system
ROM BIOS code space. The additional step of copying
BIOS data is eliminated since data can be copied directly
from ROM into the shadow RAM.

Remapping. It is often the case that following completion
of the shadowing process, portions of the RAM in the
reserved memory area are not used. Since typical soft-
ware applications are not designed to be able to access
reserved memory for general storage purposes, the free
portions of reserved RAM remain unused. A software ap-
plication can directly access reserved memory, but with-
out prior knowledge of the configuration of the system,

¢ System
ROM BIOS
Fo000 On-Board
Option ROMs

E0DO0 —
10 Adapters
and .
Doooo Memory
— Drivers
¥ Video ROM —
BIOS
C0000 w—
Video Display
BoDOO Area and

Video RAM
AD0DO Base
o Memory

Fig. 10. Shadow RAM

the application could unknowingly cause a device to mal-
function by corrupting sensitive data. One approach to
this problem is to incorporate an expanded memory man-
ager into the system configuration. An expanded memory
manager manages the free reserved memory by allowing
the application to use the space as additional base
memory, and makes the system appear as if the amount
of base memory has been expanded. The disadvantage of
using an expanded memory driver is that it is used during
run time. This mode of operation degrades system perfor-
mance. The expanded memory manager also requires
memory space for storage of the software routines, there-
by leaving less memory for the application to use.

Another conventional method is to remap portions of re-
served memory to the top of the physical address space
of the system. The disadvantage of this method is that
the memory location to which the free memory is moved
sometimes does not border on existing memory locations
and results in creating a noncontiguous memory structure,
Most applications cannot make use of fragmented
memory. Also, the conventional remapping scheme is a
machine-specific feature, and therefore, all software ap-
plications must be customized {o take advantage of the
remapped memory.

The Vectra 486 solution to memory remapping uses the
system configuration information in nonvolatile RAM to
instruct the memory controller how to organize the sys-
tem memory. As an EISA machine, the Vectra 486 has an
autoconfiguration program which identifies system compo-
nents and allocates system resources to obtain maximal
system performance.

Memory remapping in the Vectra 486 is a two-step pro-
cess. The first step is to find the largest contiguous
chunk of free reserved memory that can be remapped.
The video RAM space (A0D00 to BFFFF) is generally not
used because the video cards and the embedded subsys-
tems are currently made with their own RAM. On-board
option ROMs, which physically reside at E0000 to EFFFF,
are rarely used, and the video BIOS address space, CO000
to C8000, fragments the reserved memory area. The way
to create the largest contiguous section for reserved
memory is to shadow the video BIOS in shadow memory

October 1991 Hewlent-Packard Jowrnal - 89

© Copr. 1949-1998 Hewlett-Packard Co.

at E0000, provided that the system does not contain on-
board option ROMs and if /O considerations of the video
BIOS support portability. This paradigm creates a 256K-
byte (A0000 to DFFFF) chunk of memory that can be
remapped (see Fig. 11). The 32K-byte portion between
E8000 and EFFFF is unused. The system memory control-
ler is told what area of reserved memory is to be re-
mapped. It must also be noted that systems that use the
DOS shell rely heavily on the system BIOS and video
BIOS routines, so maximally, only 256K bytes of memory
is available for remapping. Systems that use 0S/2 and the
UNIX* operating system can maximally remap all of re-
served memory because these operating systems replace
system BIOS and video BIOS and supply all of their own
drivers.

The second step in the remapping process is to determine
where the physical existence of memory ends. The sys-
tem BIOS knows this information following the system
memory test procedure during the system power-on self-
test. This address is passed to the system memory con-
troller. Following the first step, the memory controller has
the necessary information for memory remapping. The
system memory controller then does the proper address
translation.

BIOS shadowing and reserved memory remapping are
powerful system features that enhance system perfor-
mance and make better use of system resources. BIOS
shadowing is a common feature among all machines cur-
rently on the market. Its primary advantage is to bring
more parity between processor speed and ROM access
times. To implement this funetionality in an efficient man-

*UNIX is a reqistered trademark of UNIX System Labaratories Inc. in the US.A. and other
Countries

System Memory Shadow RAM
100000
— System AOM BIOS
b Foooo
b‘: ‘4’ 0.9, OO
F E3000
E0000 Video ROM BIOS
— "‘ cnnun

-S

Base Memory

NN 256K Bytes of Memory Available for Remapping
o7 Unused

Fig. 11. Remapping.

90 October 1991 Hewlett-Packard Journal

ner saves hardware and code space which translates into
a cost savings to the customer.

System Memory Initialization

Finite state machines implemented in software can be a
very powerful tool. For a system’s BIOS, a software finite
state machine is ideal for component test situations in
which scratchpad memory is not available. This technique
is used in testing the system memory configuration in the
Vectra 486.

The memory subsystem of the Vecira 486 is a two-way
interleaved, linear memory architeciure. The system
memory board has four memory banks. Each bank can
hold two memory modules. The two memory modules are
two-way word interleaved. The banks of memory are or-
ganized in a linear fashion. See the article on page 78 for
more information about the Vectra 486 memory subsys-
temn.

The memory modules are packaged in single in-line
memory modules and come in 1M-byte, 2M-byte, 4M-byte,
and 8M-byte varieties. The 1M-byte and 4M-byte modules
are single-density modules. The 2ZM-byte and 8M-byte
modules are double-density modules, Each memory bank
on the system memory board musi contain a pair of
memory modules that are the same size and have the
same density type. Moreover, density restrictions require
that all memory banks contain memory modules of the
same density type. The linear structure of the memory
subsystem requires that the amount of memory in a bank
be less than or equal to the amount of memory in a bank
that logically precedes it. The exception to this rule is the
first bank because no other memory bank precedes il

Before system memory can be tested, the memory subsys-
tem configuration must be verified. The power-on self-test
procedure in the system BIOS is responsible for (his task.
The use of system resources must be kept to a minimum
because system memeory is not available at this stage in
the system power-on initialization process. A software
finite state machine is ideal in this situation, since only
the registers within the processor are available. The finite
state control is guided by the memory module identifica-
tion encoding (each memory module has information en-
coded within it that specifies the size and density type of
the module). The memory state machine evaluates the
identification for each memory bank and verifies that the
current memory configuration (linearity, uniform bank
densities, etc.) is valid.

The software finite state method is very effective when
considering that each of the four banks can have one of
five types of memory modules. The number of possible
memory configurations is 47, or 1024 possible configura-
tions. Of the 1024 possible configurations, 28 are valid. If
module density errors are found first, then the linearity
check can be done with a software finite state machine
with four states. Fig. 12 shows the finite stafe machine
for testing the Vectra 486 memory configuration.

© Copr. 1949-1998 Hewlett-Packard Co.

10 X
State Machine Inputs
SIMM Presence Detect Bit = [1--SIMM Present, 0 —-SIMM Not Present|
SIMM Part Size = {1~ 2M-Byte or BM-Byte SIMM, 0 —1-Mbyte or 4-Mbyte SIMM|
X = Don'l Care
SINM Current Next
Presence Size State State Comments
] X 0 2
1 0 0 1
1 1 0 0
0 X 1 2
1 0 1 1
1 1 1 Error 4M-Byte or EM-Byte Part Found
after a 1M-Byte or 2M-Byte Part
0 X 2 2
1 e bl Error SIMMs Found after an Empty Bank

Fig. 12. The finite state machine for Vectra 486 memory con-
figuration testing.

Defect Tracking

Because BIOS source code was shared among indepen-
dently managed projects in different locations, BIOS prob-
lems had to be tracked not only for the Vectra 486 prod-
uct but also for several other HP personal computer
products as will.

To keep track of prerelease problems across the various
projects and to provide a means of collecting more global
process improvement metries, a custom dBASE IV® ap-
plication was written for use by all of the BIOS teams.
Problems reported on the Vectra 486 were sent by testers
to a special electronic mail account to be entered into
the database. The use of a standard problem form al-
lowed the collection of valuable statistical as well as
problem-specific information. Information about BIOS
problems in common files was shared directly with each
team by exchanging database files. The flexibility of the
PC database application allowed each team to adapt the
database application to their needs without affecting the
ability to share data. This was important, because several
BIOS teams could have been involved in resolving any
one problem.

As each problem was investigated and resolved, status
information was entered into the database. Detailed in-
formation, such as which code module contained the
problem and when the problem was introduced, was
readily available. The typical weekly status report con-

*DBASE IV is & registered U S. trademark of Ashton-Tate Corp

tained a simple summary of the active problems, the
problem owners, and their current status. One BIOS team
member acted as the bug manager and helped keep ev-
ervone informed of the progress being made to resolve a
problem.

BIOS Qualification and Test

The BIOS qualification effort for the Vectra 486 project
was an improvement over previous BIOS development
efforts. Because of major revisions to the BIOS in the
Vectra 486 and the need to produce qualify software in
minimum time, a special BIOS qualification team was
formed. This team consisted of four engineers and a sofi-
ware technician whose main job was to verify that the
BIOS specifications were correct. In the past, the job of
qualification of the BIOS was left up to the developer of
the BIOS code. For the Vectra 486, it was felt that qualifi-
cation would be more thorough if the persons developing
and executing the tests were not the individuals develop-
ing the BIOS code.

To make best use of our limited resources, two types of
test strategies were developed: white box and black box
testing. Black box testing used a high-level language pro-
gram, such as C, to verify the functionality and quality of
the BIOS. The C functions invoked DOS functions, BIOS
functions, and /O registers to test the BIOS. This was the
standard method of testing most programs. However,
when testing the BIOS, we did not always have the
luxury of relying on an operating system such as DOS
because much of the BIOS functionality had to be tested
during the machine initialization, and was inaccessible to
high-level programs.

An alternate method was developed using some new ap-
proaches and working with special development tools o
perform while box testing. New features such as EISA
initialization, memory initialization, and shadowing rou-
tines were tested using this approach. This method forced
two engineers to read and understand the actual code:
the original designer and the one developing the test. This
task alone required an in-depth understanding of the BIOS
modules on an instruction-by-instruction basis. The con-
cept of having two people intimately understand each
module is not new, but typically resource limitations
make such an arrangement a luxury.

There were many advantages to this type of testing. For
one thing, it allowed us to simulate some of the system
errors, For example, if the user had an invalid memory
configuration, this error could be simulated without even
changing the memory inside the computer. Furthermore,
all the valid memory configuration could be tested via
this program. There were well over 1000 memory configu-
rations that could be tested through one automated pro-
gram. Normally, this process would involve a technician
physically changing the configuration each time. Another
advantage was that the BIOS could be tested without the
hardware. This proved to be very helpful since the BIOS
was being developed before the hardware was available.
With this method, two tasks could be done concurrently.
Once the hardware was available, the tests could also be
executed on the hardware.

October 1991 Hewlett-Packard Joumnal 91

© Copr. 1949-1998 Hewlett-Packard Co.

The test strategy that was developed by the BIOS qualifi-
cation team enabled the team to perform tests on the
BIOS that would normally not have been done. Once the
tests were developed, they could be added to the test
suite for regression testing and other BIOS related tests.

Conclusion

The HP Vectra 436 BIOS development effort was a major
milestone in HP's Personal Computer Groups software
development history from the perspective of both new PC
technology advances supported and new processes
introduced. Support for new technologies and features
like the EISA architecture and an advanced memory con-
troller was incorporated into BIOS with high quality while
meeting system schedules.

New or enhanced processes with their associated tools
were incorporated to meet customer needs and IIP busi-
ness requirements. A customized source version control
process and tools allowed efficient, multi-site, simulta-

neous PC BIOS development with maximum code reuse.
Brand new defect tracking and component gualification
processes and tools allowed quality BIOS development
concurrent with PC hardware development.

Acknowledgments

The BIOS group would like to thank the Vecira 486 hard-
ware team, the easy config utility team, the quality assur-
ance group, the test development group, and other indi-
viduals throughout the division who participated in the
Vectra 486 development. In particular we would like to
thank Joyce Higa, Ruth Lim, Dave Wilkins, Roderick
Young, Jongwon Yuk, Van T. Dam, Tewelde Stephanos,
Paul Schlegelmann, Becky Smith, Dirk Massen, Martin
Goldstein, and Chin Pin Wu. A special thanks to our proj-
ect manager Anil R. Desai and section manager Tom
Battle for their continued support. The support of all
these people has made the Vectra 486 project a success
and helped us deliver a high-performance and high-quality
machine to the end user.

Performance Analysis of Personal
Computer Workstations

The ability to analyze the performance of personal computers via
noninvasive monitoring and simulation allows designers to make critical

design trade-offs before committing to hardware.

by David W. Blevins, Christopher A. Bartholomew, and John D. Graf

Today’s high-performance personal computers are being
used as file servers, engineering workstations, and busi-
ness transaction processors, areas previously dominated
by large, costly mainframes or minicomputers. In this
markel, performance is of paramount importance in dif-
ferentiating one product from another. Our objective at
HP's Personal Computer Group’s performance analysis
laboratory is to ensure that performance is designed into
HP's offering of personal computers. To achieve this, anal-
ysis of a personal computer's subsystem workloads and
predictive system modeling can be used to identify bottle-
necks and make architectural design decisions. This ar-
ticle describes the tools and methodologies used by HP
engineers to accomplish performance analysis for person-
al computers.

The toolset currently being used at the performance anal-
ysis laboratory consists of specialized hardware and soft-
ware. Typically, the hardware gathers data from a system
under test and then the data is postprocessed by the soft-
ware 1o create reports (see Fig. 1). This data can also be

92 October 1991 Hewlet-Packard Journal

used to drive software models of personal computer sub-
systems.

Hardware-Based Tools

The two hardware-based performance analysis tools
shown in Fig. 1 are the processor activity monitor
(PMON) and the backplane /O activity monitor (BIO-
MON). Both tools are noninvasive in that they collect
data without interfering with the normal activity of the
system under test.

Processor Activity Monitor

The processor activity monitor is a hardware device that
monitors a personal computer’s microprocessor to track
low-level CPU activity. The PMON is sandwiched between
the computer’s CPU and the CPU socket (see Fig. 2). The
PMON monitors the processors address and conitrol pins,
For each CPU operafion, the PMON will track the dura-

© Copr. 1949-1998 Hewlett-Packard Co.

Backplane 1 0
L g Activity Moniter
(BIOMON)
Processor
Processor
Activity Monitor
(PMON)
Network
!0 Control Logic interface
/_!‘*x] e =N | A
(© N A (. . A0
B e ® 10 Address Activilty) |
g ® Cycle Type Duration [, ‘ - ® Function Call Occurence
0 o Profile’ Execution ol
O ® Memory Address ol Times: (o]
(0] Trace List (o] - BIOS o
(o] i O - Operating System E‘ Fig. 1. The hardware-based
© e Cycle Type Mix i) 0 . ~ | performance analysis tools
4 i E o8 Taged Codohetivity: 21 {“’\1(IN and BI[’JM(I }I\ connected

[

PMON OQutput

tion and address of the operation and output the results
to the data capture device.

Gathering statistics on the activities of a personal com-
puter’s microprocessor can be very useful in making de-
sign decisions about the arrangement of the support cir-
cuitry (e.g., cache and main memory, I/O bus interface,
and bus lines). In addition, trace files that detail the
CPU's requests to the memory system can be used to
drive software simulations of various cache memory ar-
rangements as well as more comprehensive CPU and
memory or system simulations.

Two data capture devices are commonly used in conjunc-
tion with the PMON. The first, an HP 16500 logic analyzer
configured with optional system performance analysis
software, generates two main types of data. One is a his-
togram that shows the occurrence mix of a user-defined
subset of the possible CPU cycle types (Fig. 3a). The per-
formance analysis software averages 1000 samples of
cycles from the PMON on the fly, giving a randomly
sampled profile of processor activity throughout the dura-
tion of a performance benchmark. The second type of

Control and
Status

cru Address

(2.9, Inteld86)

CPU State
and Address
Tracker

Logic
Analyzer
and
Postprocessor

Fig. 2. Processor activity monitor external connections.

BIOMON Output to the system under test,

data provided by the HP 16500 is real-time calculation of
the minimum, maximum, and average time intervals be-
tween the beginning and end of user-defined events (Fig.
3b). The performance analysis software averages the in-
terval calculations on the fly over a large number of sam-
ples to give, for example, the average interarrival time of
writes to video memory in a CAD application.

The other data capture device used with the PMON is a
less intelligent but higher-capacity logic analyzer. This
instrument has a 16-megasample-deep trace buffer (as
opposed to the 1000-sample deep buffer in the HP 16500).

total semples 18912
INT_ALCK 8
HAL T o
CPU [0_READ 5343
Cvﬂi! 10 _WRITE tTAT
Types CODE.PERD a6
HEN_HEAD 3437
MENARITE 0642
-1 1=
~aff-
~aff-
-af1=
o ather o

i 10x Mz ¥on guz S0t B0 T0: BOx U0z 1001

(a)

fin time Mex time Avg time Totael samples
600 ns 68.32 ms 105.7 us I340

Time Interval

0 s| to 1.250 us
1.250 us| to 2.500 us
2,500 us| to 750 us
3.750 us| to 000 us

500 us
a0 us
0.00 us

0z 10w 20% 30X 40% SOX 60X TOX BOX [Ox 100%

|
6.250 us| to

7.500 us| to
S
8.750 us| to

3
5
5.000 us| to | 6.250 us|
7
E
1

{b)
Fig. 3. Sample histograms from an HP 16500 logic analyzer. (a) The

oceurrence mix of a subset of Inteld86 CPLI evele types. (b) Inter-
arrival times of writes to video memory.

October 1991 Hewlett-Packard Journal 93

© Copr. 1949-1998 Hewlett-Packard Co.

Number of = A 5 " Average

Address Range Besirncas « of Totals Total CPU Clocks 2 of Time Pl Clocks
Interrupt Vectors 3249 1.34% 38297 1.55% 11.79
STD-BIOS Data 1153 0.48% 12340 0.50% 10.70
Dos 23670 9.80% 249800 10.08% 10.55
Application 197143 §1.59% 2028358 B1.91% 10.28
Video RAM 248 0.10% 5890 0.24% 23.75
BIOS ROM 1967 0.81% 21284 0.86% 10.82 . N —
Extended Memory 14208 5.88% 120240 4.86% gss | Yig.4. PMON address range

summary report.

Cycles from the PMON are captured in this buffer in real
time and the data is later archived to a host computer’s
hard disk. The buffer typically holds four to five seconds
of continuous bus cycle activity generated by a 25-Mhz
Intel486 microprocessor running an MS-DOS® application.
The data can then be used to drive software simulations
or processed to create summary reports, such as an ad-
dress range summary of how the processor’s address
space is used by operating systems and application soft-
ware (see Fig. 4).

Backplane I/O Activity Monitor

The backplane /O activity monitor, or BIOMON, also cap-
tures information from a personal computer’s hardware,
but instead of the CPU activity, the /O activity on the
ISA (Industry Standard Architecture) or EISA (Extended
Industry Standard Architecture) backplane is monitored
(Fig. 5). The BIOMON consists of two backplane 1/0
cards: the qualify and capture card and the monitor card.
The qualily and capture card resides noninvasively in the
SUT (system under test) and is connected via a ribbon
cable to the monitor card, which is located in another
personal computer called the monitor system. The moni-
tor system receives, stores, and processes the /O events
captured on the SUT’s backplane.

During operation the qualify and capture card is loaded
with capture enable flags for each of the /O addresses
whose activity is to be monitored on the SUT backplane.

Once the qualify and capture card is set up, /O address
accesses on the SUT’s backplane cause an event informa-
tion packet (address, data, ete.) to be transferred to a
first-in, first-out (FIFO) holding buffer, allowing for
asynchronous operation of the SUT and the monitor sys-
tem. The FIFO is unloaded by transferring each event
information packet to the monitor system’s extended

*MS-00S is a U §. registered trademark af Microsoft Carp,

Trigger Address

Comparator and
Timer

System Under Test

94 October 1991 Hewlett-Packard Journal

memory. At the end of event capture, this trace of /O
events can be either stored to hard disk or immediately
postprocessed for analysis.

One very powerful use of BIOMON is the performance
analysis of marked code, which is code that has been
modified to perform /O writes at the beginning and end
of specific events within a software routine. The frequen-
ey of oceurrence and execution time for each marked
software event can then be analyzed under different con-
figurations to find existing or potential bottlenecks and
the optimum operating environment.

As an example, the performance analysis laboratory has
developed a special installable software filter that writes
to specific /0 addresses at the beginning and end of DOS
and BIOS (Basic /O System) interrupts. For our pur-
poses, a write to O port 200 (hexadecimal) denotes the
beginning of an interrupt, and a write to port 202 denotes
the end of an interrupt. The trigger address comparator is
told to eapture data for I/O addresses 200 and 202, and
any normal application using DOS or BIOS functions is
run on the SUT. The resulting trace can be postprocessed
to show which DOS and BIOS routines were used by the
application, how many times each one was called, and
how long they executed (Fig. 6a). Other information such
as the interarrival time between events, exclusive versus
inclusive service time for nested events, and total time
spent in various application areas can also be extracted
(Fig. 6b). Analysis of this information can assist the soft-
ware engineer in optimizing frequently-used functions in
DOS and the BIOS.

This technique can also be used to analyze protected-
mode operating systems such as 05/2 and UNIX.#* How-
ever, because of their nature, these environments must

“*UNIX 15 a registered trademark of UNIX System Laboratonies in the USA and other coun
ries.

Monitor
Card

Fig. 5. The backplane /O monitor
components.

© Copr. 1949-1998 Hewlett-Packard Co.

have tags embedded into the operating system code. (Pro-
tected-mode operating systems do not allow a user to
arbitrarily write to specific VO locations.)

Another use of the BIOMON is to trigger on reads and/or
writes to /O locations associated with accessory cards
such as disk controllers, serial and parallel interfaces,
video cards, and so on. For instance, the interarrival rates
of data read from a disk controller could be examined to
determine the actual data transfer rate attained by the
disk mechanism or drive controller subsystem. Additional-
ly, by monitoring the disk controller’s command registers,
an application’s disk I/O can be fully characterized.

Software-Based Tools

The software-based tools used by the performance labora-
tory allow simulation of different memory architectures.

Cache Simulator

The cache simulator is a trace-driven simulation based on
the Dinero cache simulator from the University of Califor-
nia at Berkeley.! The simulator takes as its input a list of
memory accesses (trace file) and parameters describing
the cache to be simulated. These parameters include
cache size, line size, associativity, write policy, and re-
placement algorithm. The cache simulator reads the
memory accesses from the trace file and keeps statistics
on the cache hit rate and the total bus traffic to and from
main memory. When the entire frace file has been read,
the simulator generates a report of the cache statistics,

A trace file is generated by connecting the PMON fo a
CPU and storing all the memory accesses on the CPLU
bus to the high-capacity logic analyzer described above.
The data collected from the analyzer can later be down-
loaded to a host personal computer and archived to hard
disk. To get useful data from the simulator, however, the
input trace file must be long enough to “prime” the simu-
lated cache. The first several thousand memory accesses
in the trace file will be misses that fill up the initially
empty cache. The simulator will report artificially low hit
rates, because in a real system the cache is never com-

pletely empty. If the trace file is significantly longer than
N,*, priming effects are minimized. When simulating a
128K-byte, 2-way associative cache external to the In-
tel486. N,, is approximately 40,000.° The high-capacity
logic analyzer mentioned above is able to store 16 million
memory accesses from the Intel486 via the PMON. A
trace file containing 16 million accesses results in a prim-
ing error of less than 1% in the hit rate calculation (as-
suming a hit rate of approximately 90% for the 128K-byte,
Z-way cache).

Memory Subsystem Simulator

The memory subsystem simulator, a program writien in
C++, is a true event-driven simulation that keeps track of
time rather than just statistics. It builds on the cache sim-
ulator by integrating it into a more comprehensive model
that simulates access time to memory. Il accepts a param-
eter file that includes cache parameters, DRAM and
SRAM access times, and other memory architecture pa-
rameters. It also reads in a PMON trace file, although this
one must contain all accesses (not just memory), and
their durations so that the simulator can keep track of
time. The result is essentially a running time for the input
trace file, along with statistics on all aspects of the
memory subsystem.

This simulator can be used for making design trade-offs
within 2 memory subsystem, such as cache size and orga-
nization, DRAM speed, interleave, page size, and write
buffer depth. Fig. 7 shows the sample results of a
memory subsystem simulation of relative memory per-
formance versus external cache size for a 33-MHz In-
tel486 running a typical DOS application. By simulating
various design alternatives in advance, the design engi-
neer can arrive at a memory architecture that is tuned for
optimum performance before committing to hardware.

Conclusion

The performance analysis laboratory of HP's Personal
Computer Group has developed a suite of hardware and
software tools to aid in the design process. The hardware

"N, equals the number of memory accesses in the trace file needed to fill the cache
p B0

Number of . ; ' Average Minimum Maximum
Interrupt Debuirrerices % of Total Total Time % of Total Titie Time Time
13:02 1,976 1.12% 24,630.00 ms 66.26% 12,470.00 s 569.39 us 57,880.00 us
15:90 13,133 T42% 71.58 ms 0.19% 5.45 us 4.80 us 34.33 ps
15:91 1313 7.42% §3.90 ms 0.17% 487 ps 4.56 us 7.56 ps
76:00 l 13133 7.42% 209.24 ms 0.56% 15.83 pus 14.89 us 21,37 us
()
Area Total Time % ol Time
Video 2,612.00 ms 15.76%
Disk 12,732.00 ms 76.81%
Serial 12.23ms 0.07%
Parallel 0,00 ms 0.00% _
Keyboard 134.95 ms 0.81% Fig. 6. Reports derived from
Timer 151.48 ms 0.91% postprocessing BIOMON trace
Other 834.12 ms 5.64% file data. (a) Interrupt level

{b)

summary report. (b) Applica-
tion level summary

October 1991 Hewlett-Packard Journal -~ 95

© Copr. 1949-1998 Hewlett-Packard Co.

Relative
Performance

} } . i } } + —
BK 16K 32K 64K 128K 256K 512K M
Cache Size (Bytes)

Fig. 7. Sample results of 2 memory subsystem simulation of relative
memory performance versus external cache size for a 33-MHz
Inteid8h running a typical DOS application.

tools give design engineers insight into the low-level per-
formance of existing systems, and the software tools use
the data produced by the hardware tools to predict the
performance of future architectures.

The performance tools were used extensively in designing
the HP Vectra 486, and more recently the Vectra 486/33T.
The tools helped show that a burst memory controller
(described on page 78) was a better price/performance

FRS

D
TOZ: L
H
0

solution than an external memory cache for the 25-MHz
Vectra 486, and that an external cache was a necessity
for the 33-MHz Vectra 486/33T. The tools also helped pre-
dict the performance gain of memory write buffers in a
Vectra 486 system. This resulted in the addition of write
buffers to the Vectra 486/33T memory architecture.

Acknowledgments

The original PMON was designed by Carol Bassett and
Mark Brown. Later versions were implemented by Steve
Jurvetson. BIOMON's design owes thanks to several peo-
ple. Its predecessor was designed by Bob Campbell and
Greg Woods. Subsequent help came from Ali Ezzet, Chris
Anderson, and John Wiese. Greg Woods coded the instal-
lable filter and the original postprocessing program. Jim
Christy provided additional software help.

References

1. M. D. Hill, “Test Driving Your Next Cache,” MIPS, Vol. 1, no. 8,
August 1989, pp. 84-92.

2. H. 8. Stone, High Performance Computer Architecture, Second
Edition, Addison-Wesley, 19890,

00093159
445

QUARTERS

" JOURNAL

[/2} paciarc

5081-25058

© Copr. 1949-1998 Hewlett-Packard Co.

	Introduction to the HP Component Monitoring System
	Medical Expectations of Today's Patient Monitors
	Component Monitoring System Hardware Architecture
	Component Monitoring System Software Architecture
	Component Monitoring System Software Architecture
	Component Monitoring System Software Development Environment
	Component Monitoring System Parameter Module Interface
	Measuring the ECG Signal with a Mixed Analog-Digital Application-Specific IC
	A Very Small Noninvasive Blood Pressure Measurement Device
	A Patient Monitor Two-Channel Stripchart Recorder
	Patient Monitor Human Interface Design
	Globalization Tools and Processes in the HP Component Monitoring System
	The Physiological Calculation Application in the HP Component Monitoring System
	Mechanical Implementation of the HP Component Monitoring System
	An Automated Test Environment for a Medical Patient Monitoring System
	Production and Final Test of the HP Component Monitoring System
	Calculating the Real Cost of Software Defects
	A Case Study of Code Inspections
	The HP Vectra 486 Personal Computer
	The HP Vectra 486 EISA SCSI Subsystem
	The HP Vectra 486/33T
	The EISA Connector
	EISA Configuration Software
	The HP Vectra 486 Memory Controller
	The HP Vectra 486 BASIC I/O System
	Performance Analysis of Personal Computer Workstations

